Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quality flowing water

The classification of flowing water quality is summarized in the table... [Pg.621]

The water quality (air content) and the water flow influenced the measurements using one channel. Therefore the four channel system was first tested in the laboratory with a stationary tube. The best results were obtained using tap water and a well controlled flow in a water-filled chamber. A great difference in the concentration of air in the different grades of water was obvious, and the tap water was superior to soft water during these measurements. [Pg.900]

BWRs operate at ca 7 MPa (70 bar) and 288°C. Some of the coolant passing through the core is converted into steam which is separated from the water with equipment inside the reactor vessel (see Eig. 2). The steam goes to the turbine generator while the water is recirculated back to the bottom of the core. A side stream is continuously purified using deminerali2ers and filters to control the water quality of the reactor water. EuU-flow condensate deminerali2ers... [Pg.194]

BWRs do not operate with dissolved boron like a PWR but use pure, demineralized water with a continuous water quality control system. The reactivity is controlled by the large number of control rods (>100) containing burnable neutron poisons, and by varying the flow rate through the reactor for normal, fine control. Two recirculation loops using variable speed recirculation pumps inject water into the jet pumps inside of the reactor vessel to increase the flow rate by several times over that in the recirculation loops. The steam bubble formation reduces the moderator density and... [Pg.211]

This section provides a general overview of the properties of lake systems and presents tlie basic tools needed for modeling of lake water quality. The priiiciptil physical features of a lake are length, depth (i.e., water level), area (both of the water surface and of tire drainage area), and volume. The relationship betw een the flow of a lake or reserv oir and the volume is also an important characteristic. The ratio of the volume to the (volumetric) flow represents tlie hydraulic retention time (i.e., the time it would take to empty out the lake or reservoir if all inputs of water to the lake ceased). This retention time is given by the ratio of the water body volume and tire volumetric flow rate. [Pg.361]

Design wet bulb Design dry bulb Water flow rate Water quality... [Pg.529]

Typically, FT boilers tend to have lower rates of overall heat-flux and lower steam/water quality, and nucleate boiling predominates. Water tube (WT) boilers tend to have higher heat fluxes and higher steam/water quality under these conditions, annular flow convective boiling tends to dominate. [Pg.6]

Reverse osmosis/electrodeionization (RO/EDI) plants are available in modular form to suit any desired input-output water quality and flow rate. A RO/EDI system should be capable of producing high-purity water of perhaps 5 to 20 xS/cm conductivity (0.2-0.05 MO/cm resistance). By providing a second EDI stack in series, it is possible to achieve even higher quality of up to 0.055 xS/cm conductivity (18.2 Mfl/cm resistance). [Pg.375]

Mechanistic Approaches. Adequate and appropriate river-quality assessment must provide predictive information on the possible consequences of water and land development. This requires an understanding of the relevant cause and effect relationships and suitable data to develop predictive models for basin management. This understanding may be achieved through qualitative, semi-quantitative or quantitative approaches. When quantitative or semi-quantitative methods are not available the qualitative approach must be applied. Qualitative assessments involve knowledge of how basin activities may affect river quality. This requires the use of various descriptive methods. An example of this kind of assessment is laboratory evaluation of the extent to which increases in plant nutrients, temperature or flow may lead to accelerated eutrophication with consequent reduction of water quality. [Pg.246]

Water quality descriptor Effect of low flow Effect on biota Affected process... [Pg.27]

Terrestrial ecosystems (plants and animals) under water scarcity suffer from water stress, and aquatic ecosystems of intermittency in water flow. Water scarcity has implications on hydrologic resources and systems coimectivity, as well as negative side-effects on biodiversity, water quality, and river ecosystem functioning. Finally, water scarcity has also direct impacts on citizens and economic sectors that use and depend on water, such as agriculture, tourism, industry, energy and transport. [Pg.248]

Surface water information, including drainage patterns (overland flow, topography, channel flow pattern, tributary relationships, soil erosion, and sediment transport and deposition), surface water bodies (flow, stream widths and depths, channel elevations, flooding tendencies, and physical dimensions of surface water impoundments structures surface water/ groundwater relationships), and surface water quality (pH, temperature, total suspended solid, salinity, and specific contaminant concentrations)... [Pg.601]

In Fig. 6.1, an attempt is made to show to what extent sensors have been penetrating the appliance market over the past years, a trend which is set to continue in the next decade. In the beginning, there were relatively simple sensors for temperature, pressure, flow, etc. Over the last years, non-contact measuring devices have attracted much attention, such as non-contact temperature monitoring for toasters or for hair blowers. The introduction of more complex sensor systems, such as water quality sensors or multi gas sensing artificial noses is imminent. [Pg.211]


See other pages where Quality flowing water is mentioned: [Pg.16]    [Pg.26]    [Pg.16]    [Pg.26]    [Pg.48]    [Pg.151]    [Pg.1087]    [Pg.54]    [Pg.597]    [Pg.611]    [Pg.85]    [Pg.360]    [Pg.361]    [Pg.480]    [Pg.855]    [Pg.242]    [Pg.245]    [Pg.256]    [Pg.261]    [Pg.264]    [Pg.91]    [Pg.173]    [Pg.189]    [Pg.192]    [Pg.194]    [Pg.132]    [Pg.256]    [Pg.4]    [Pg.6]    [Pg.360]    [Pg.897]    [Pg.166]    [Pg.41]    [Pg.212]    [Pg.296]    [Pg.323]    [Pg.222]   
See also in sourсe #XX -- [ Pg.617 , Pg.618 , Pg.619 , Pg.620 , Pg.621 ]




SEARCH



Feed water quality concentrate flow rates

Water quality

© 2024 chempedia.info