Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactor flow pattern

According to the flow pattern reactors can be stirred-tank and tubular type. A stirred-tank reactor is a tank whose contents or reaction mixture is agitated... [Pg.3]

Most BESs have been designed as conventional fuel cells, that is, two flat electrode compartments separated by a membrane. Design parameters can be adjusted from this traditional design. These parameters include electrode spacing, flow patterns, reactor volumes and electrode surface areas. The original H-type fuel cells are mostly used for studies of physiological parameters of the biocatalyst and not for optimizing output [37, 38]. [Pg.151]

Given one of the two ideal flow patterns, reactor conversion is determined by the Damkohler number. Da. which is the ratio of the characteristic process time t = t = V/Q (mean residence time) and... [Pg.109]

Fresh butane mixed with recycled gas encounters freshly oxidized catalyst at the bottom of the transport-bed reactor and is oxidized to maleic anhydride and CO during its passage up the reactor. Catalyst densities (80 160 kg/m ) in the transport-bed reactor are substantially lower than the catalyst density in a typical fluidized-bed reactor (480 640 kg/m ) (109). The gas flow pattern in the riser is nearly plug flow which avoids the negative effect of backmixing on reaction selectivity. Reduced catalyst is separated from the reaction products by cyclones and is further stripped of products and reactants in a separate stripping vessel. The reduced catalyst is reoxidized in a separate fluidized-bed oxidizer where the exothermic heat of reaction is removed by steam cods. The rate of reoxidation of the VPO catalyst is slower than the rate of oxidation of butane, and consequently residence times are longer in the oxidizer than in the transport-bed reactor. [Pg.457]

Multiphase Reactors. The overwhelming majority of industrial reactors are multiphase reactors. Some important reactor configurations are illustrated in Figures 3 and 4. The names presented are often employed, but are not the only ones used. The presence of more than one phase, whether or not it is flowing, confounds analyses of reactors and increases the multiplicity of reactor configurations. Gases, Hquids, and soHds each flow in characteristic fashions, either dispersed in other phases or separately. Flow patterns in these reactors are complex and phases rarely exhibit idealized plug-flow or weU-stirred flow behavior. [Pg.506]

Flow Regimes in Multiphase Reactors. Reactant contacting, product separations, rates of mass and heat transport, and ultimately reaction conversion and product yields are strong functions of the gas and Hquid flow patterns within the reactors. The nomenclature of commonly observed flow patterns or flow regimes reflects observed flow characteristics, ie, armular, bubbly, plug, slug, spray, stratified, and wavy. [Pg.508]

Distributors in industrial units typically have large numbers of injection points of quite diverse design characteristics, some of which are depicted in Eigure 16 for fluidized-bed appHcations. Flow variations through these parallel paths can lead to poor flow distributions within a reactor, thus reducing product yields and selectivity. In some circumstances, undesirable side products can foul portions of the distributor and further upset flow patterns. Where this is important, or where the possibiHties and consequences are insufficiently understood and independent means caimot be employed to assure adequate distribution, the pilot plant must be sized to accommodate such a distributor. Spacing should be comparable to those distributors that are anticipated to be... [Pg.519]

Although mote expensive to fabricate than the pelleted catalyst, and usually more difficult to replace or regenerate, the honeycomb catalyst is more widely used because it affords lower pressure losses from gas flow it is less likely to collect particulates (fixed-bed) or has no losses of catalyst through attrition, compared to fiuidized-bed and it allows a mote versatile catalyst bed design (18), having a weU-defined flow pattern (no channeling) and a reactor that can be oriented in any direction. [Pg.503]

In another land of ideal flow reactor, all portions of the feed stream have the same residence time that is, there is no mixing in the axial direction but complete mixing radially. It is called a.plugflow reactor (PFR), or a tubular flow reactor (TFR), because this flow pattern is characteristic of tubes and pipes. As the reaction proceeds, the concentration falls off with distance. [Pg.695]

A distinc tion is to be drawn between situations in which (1) the flow pattern is known in detail, and (2) only the residence time distribution is known or can be calculated from tracer response data. Different networks of reactor elements can have similar RTDs, but fixing the network also fixes the RTD. Accordingly, reaction conversions in a known network will be unique for any form of rate equation, whereas conversions figured when only the RTD is known proceed uniquely only for hnear kinetics, although they can be bracketed in the general case. [Pg.2087]

In many cases, two identical reaction systems (e.g., a pilot plant scale and a full-scale commercial plant) exhibit different performances. This difference in performance may result from different flow patterns in the reactors, kinetics of the process, catalyst performance, and other extraneous factors. [Pg.1037]

As the flow of a reacting fluid through a reactor is a very complex process, idealized chemical engineering models are useful in simplifying the interaction of the flow pattern with the chemical reaction. These interactions take place on different scales, ranging from the macroscopic scale (macromixing) to the microscopic scale (micromixing). [Pg.49]

Non-ideal reactors are described by RTD functions between these two extremes and can be approximated by a network of ideal plug flow and continuously stirred reactors. In order to determine the RTD of a non-ideal reactor experimentally, a tracer is introduced into the feed stream. The tracer signal at the output then gives information about the RTD of the reactor. It is thus possible to develop a mathematical model of the system that gives information about flow patterns and mixing. [Pg.49]

As their name suggests, these models are based on the physical principles of diffusion and convection, which govern the mixing process. According to the flow pattern, the reactor is divided into different zones with different flow characteristics. [Pg.51]

Reactor geometry - flow pattern and manner of contacting the phases... [Pg.134]

In the first class, the particles form a fixed bed, and the fluid phases may be in either cocurrent or countercurrent flow. Two different flow patterns are of interest, trickle flow and bubble flow. In trickle-flow reactors, the liquid flows as a film over the particle surface, and the gas forms a continuous phase. In bubble-flow reactors, the liquid holdup is higher, and the gas forms a discontinuous, bubbling phase. [Pg.72]

Glaser and Litt (G4) have proposed, in an extension of the above study, a model for gas-liquid flow through a b d of porous particles. The bed is assumed to consist of two basic structures which influence the fluid flow patterns (1) Void channels external to the packing, with which are associated dead-ended pockets that can hold stagnant pools of liquid and (2) pore channels and pockets, i.e., continuous and dead-ended pockets in the interior of the particles. On this basis, a theoretical model of liquid-phase dispersion in mixed-phase flow is developed. The model uses three bed parameters for the description of axial dispersion (1) Dispersion due to the mixing of streams from various channels of different residence times (2) dispersion from axial diffusion in the void channels and (3) dispersion from diffusion into the pores. The model is not applicable to turbulent flow nor to such low flow rates that molecular diffusion is comparable to Taylor diffusion. The latter region is unlikely to be of practical interest. The model predicts that the reciprocal Peclet number should be directly proportional to nominal liquid velocity, a prediction that has been confirmed by a few determinations of residence-time distribution for a wax desulfurization pilot reactor of 1-in. diameter packed with 10-14 mesh particles. [Pg.99]

These models are designed to define the complex entrance effects and convection phenomena that occur in a reactor and solve the complete equations of heat, mass balance, and momentum. They can be used to optimize the design parameters of a CVD reactor such as susceptor geometry, tilt angle, flow rates, and others. To obtain a complete and thorough analysis, these models should be complemented with experimental observations, such as the flow patterns mentioned above and in situ diagnostic, such as laser Raman spectroscopy. [Pg.55]

Example 11.7 Carbon dioxide is sometimes removed from natural gas by reactive absorption in a tray column. The absorbent, typically an amine, is fed to the top of the column and gas is fed at the bottom. Liquid and gas flow patterns are similar to those in a distillation column with gas rising, liquid falling, and gas-liquid contacting occurring on the trays. Develop a model for a multitray CO2 scrubber assuming that individual trays behave as two-phase, stirred tank reactors. [Pg.393]

As mentioned in Section 11.3, fluidized-bed reactors are difficult to scale. One approach is to build a cold-flow model of the process. This is a unit in which the solids are fluidized to simulate the proposed plant, but at ambient temperature and with plain air as the fluidizing gas. The objective is to determine the gas and solid flow patterns. Experiments using both adsorbed and nonadsorbed tracers can be used in this determination. The nonadsorbed tracer determines the gas-phase residence time using the methods of Chapter 15. The adsorbed tracer also measures time spent on the solid surface, from which the contact time distribution can be estimated. See Section 15.4.2. [Pg.430]

Suppose now that a pilot-plant or full-scale reactor has been built and operated. How can its performance be used to confirm the kinetic and transport models and to improve future designs Reactor analysis begins with an operating reactor and seeks to understand several interrelated aspects of actual performance kinetics, flow patterns, mixing, mass transfer, and heat transfer. This chapter is concerned with the analysis of flow and mixing processes and their interactions with kinetics. It uses residence time theory as the major tool for the analysis. [Pg.539]


See other pages where Reactor flow pattern is mentioned: [Pg.360]    [Pg.360]    [Pg.47]    [Pg.48]    [Pg.315]    [Pg.1109]    [Pg.456]    [Pg.510]    [Pg.511]    [Pg.512]    [Pg.514]    [Pg.514]    [Pg.515]    [Pg.705]    [Pg.1636]    [Pg.1643]    [Pg.2070]    [Pg.2115]    [Pg.29]    [Pg.220]    [Pg.287]    [Pg.195]    [Pg.103]    [Pg.109]    [Pg.400]    [Pg.574]    [Pg.364]    [Pg.249]    [Pg.250]    [Pg.35]   
See also in sourсe #XX -- [ Pg.428 , Pg.429 , Pg.430 , Pg.431 , Pg.432 , Pg.433 ]




SEARCH



Chemical reactor operating patterns non-flow

FLOW PATTERN IN LABORATORY REACTORS

Flow pattern slurry reactor

Flow patterns

Understanding Reactor Flow Patterns

© 2024 chempedia.info