Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flavonoids proanthocyanidins

Proanthocyanidins is a class of flavonoids. Proanthocyanidins are derived from the flavonoids oligomeric proanthocyanidins (OPCs) and therefore proanthocyanidins have been formerly called condensed tannins. Moreover, all proanthocyanidins have similar structures and the only differences are slight changes in the shape and attachments of the polyphenol rings. The diverse proanthocyanidins could always be found together, ranging from a proanthocyanidin unit to complex molecules with many linked units as the oligomers in nature. [Pg.25]

Polyphenols include flavonoids, proanthocyanidins, stilbenes, microbial metabolites of lignan, and hydroxycinnamates (Fig. 2). Flavonoid metabolism, while still far from being fully understood, has been the most widely studied and will therefore form the basis of this chapter. Six main subclasses of flavonoids are widely consumed by humans flavonols, flavones, flavanones, isoflavonoids, flavanols (catechins), and anthocyanins these posses the generic structure shown in Fig. 3. These classes differ in the degree of saturation and the nature and position of reactive groups on their three rings examples of substitution patterns for selected flavonoids are given in Table 1. [Pg.51]

Bahorun, T., A. Luximon-Ramma, A. Crozier et al. 2004. Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. /. Sci. Food Agric. 84 1553-1561. [Pg.622]

Proanthocyanidins are an important group of di- to oligomeric flavonoids in plants. Four proanthocyanidins (procyanidin B3, prodelphinidin B4, ECG-(4 8)-ECG and GC-(4 8)-EGCG) were determined quantitatively in tea. The amounts in fresh tea leaves were between 1 and 2 g/kg per compound (Nakabayashi, 1991). The occurrence of proanthocyanidins may serve as a criterion for the differentiation between fermented and non-fermented teas (Kiehne et al, 1997). [Pg.133]

Knowledge of the identity of phenolic compounds in food facilitates the analysis and discussion of potential antioxidant effects. Thus studies of phenolic compounds as antioxidants in food should usually by accompanied by the identification and quantification of the phenols. Reversed-phase HPLC combined with UV-VIS or electrochemical detection is the most common method for quantification of individual flavonoids and phenolic acids in foods (Merken and Beecher, 2000 Mattila and Kumpulainen, 2002), whereas HPLC combined with mass spectrometry has been used for identification of phenolic compounds (Justesen et al, 1998). Normal-phase HPLC combined with mass spectrometry has been used to identify monomeric and dimeric proanthocyanidins (Lazarus et al, 1999). Flavonoids are usually quantified as aglycones by HPLC, and samples containing flavonoid glycosides are therefore hydrolysed before analysis (Nuutila et al, 2002). [Pg.330]

Thousands of polyphenols from fruits (grapes, apples, etc.), vegetables (horse beans), and teas have been identified, many having good coloring properties, especially anthocyanins and some flavonoids. Well-documented reviews discuss the coloring capacities of some polyphenols including procyanidins. - Detailed presentations of anthocyanin and flavonoid properties and analysis are included in Sections 2.3, 4.3, and 6.3. The soluble proanthocyanidins of the colored horse bean Viciafaba L. seed coats were isolated and separated by solvent partition. [Pg.525]

Fig. 5 Scheme of the flavonoid pathway leading to synthesis of proanthocyanidins. The enzymes involved in the pathway are shown as follows CHS = chalcone synthase CHI = chalcone isomerase F3H = flavanone-3B-hydroxylase DFR = dihydroflavonol-4-reductase LDOX = leucoanthocynidin dioxygenase LAR = leucoanthocyanidin reductase ANR = anthocyanidin reductase adapted from [27] and [28]... [Pg.246]

Porter LJ (1993) Flavans and proanthocyanidins. In Harborne JB (ed) The Flavonoids Advances in Research Since 1986. Chapman Hall, London, p 23... [Pg.260]

The vanillin method is based on the condensation of the vanillin reagent with proanthocyanidins in acidic solutions. Protonated vanillin, a weak electrophilic radical, reacts with the flavonoid ring at the 6- or 8-position. The vanillin reaction is affected by the acidic nature and concentrations of substrate, the reaction time, the temperature, the vanillin concentration, and water content (Sun and others 1998). [Pg.65]

Ferreira A, Slade D and Marais JPJ. 2006. Flavans and proanthocyanidins. In Anderson OM, Markham KR, editors. Flavonoids Chemistry, Biochemistry and Applications. Boca Raton, FL CRC Press/Taylor Francis Group, pp. 553-616. [Pg.150]

The R locus determines the presence (R) or absence (r) of anthocyanins in the seed coat. R is required (with i and T) to produce black seed [10]. However the identity of the gene product encoded by this locus has not been reported. Todd and Vodkin [25] have demonstrated that brown seed coats (r) contain proanthocyanidin (PAs) and black seed coats (R) contain anthocyanins in addition to PAs and suggested that R acts subsequent to the formation of leucoanthocyanidin but previous to the formation of anthocyanins. UDP-glucose flavonoid 3-0-glucosyltransferase (UF3GT) should be considered a candidate gene of the R locus but its identiflcation has not yet been reported. [Pg.50]

Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins - a final frontier in flavonoid research New Phytol 165 9-28... [Pg.57]

Moved] Cranberry fruit of Early Black cultivar was fractionated chromatographically and fractions were analyzed for flavonoid content. The effects of the flavonoid fractions and ursolic acid, an abundant triterpenoid in cranberry peel, were assessed in two models of colon cancer and one model of breast cancer. Clonogenic soft agar assays were used to determine the effect of these compounds on tumor colony formation in HCT-116, HT-29 and MCF-7 cells. MTT and trypan blue assays were performed to assess their ability to inhibit tumor cell proliferation. TUNEL assays were performed to assess apop-totic response to the cranberry compounds. The proanthocyanidins inhibited tumor colony formation in HCT-116 and HT-29 cells in a dose-dependent manner, with greater effect on the HCT-116 cell line. Ursolic acid strongly inhibited tumor colony formation in both colon cell lines. These compounds also decreased proliferation in all three tumor cell lines with the HCT-116 cell line most strongly affected. (150 words)... [Pg.285]

There are many branches to the flavonoid biosynthetic pathways, with the best characterized being those leading to the colored anthocyanins and proanthocyanidins (PAs) and the generally colorless flavones, flavonols, and isoflavonoids. Genes or cDNAs have now been identified for all the core steps leading to anthocyanin, flavone, and flavonol formation, as well as many steps of the isoflavonoid branch, allowing extensive analysis of the encoded enzymes (Table 3.1). In addition, several DNA sequences are available for the modification enzymes that produce the variety of structures known within each class of compound. [Pg.145]

HPLC separation, as described above, is restricted to rather simple compounds that represent only a small proportion of flavonoids. Indeed, proanthocyanidin analysis becomes increasingly difficult as their molecular weight increases, due to the larger number of possible structures, smaller amounts of each individual compound, and poorer resolution of the chromatographic profiles. This is especially true of grape proanthocyanidins, which, unlike those of apple or cacao consisting only of epicatechin units, are based on four major... [Pg.270]

Thiolysis also proved useful for the analysis of derived tannins. Methylmethine-linked tannin-like compounds resulting from acetaldehyde-mediated condensation of flavanols (see Section 5.5.S.2) yielded several adducts when submitted to acid-catalyzed cleavage in the presence of ethanethiol, providing information on the position of linkages in the original ethyl-linked compounds. " Thiolysis of red wine extracts released benzylthioether derivatives of several anthocyanin-flavanol adducts, indicating that such structures were initially linked to proanthocyanidins. However, some of the flavonoid derivatives present in wine (e.g., flavanol-anthocyanins ) are resistant to thiolysis, while others (e.g., flavanol-ethyl anthocyanins) were only partly cleaved. Thiolysis, thus, appears as a rather simple, sensitive, and powerful tool for quantification and characterization of proanthocyanidins, but provides mostly qualitative data for their reaction products. [Pg.271]


See other pages where Flavonoids proanthocyanidins is mentioned: [Pg.721]    [Pg.721]    [Pg.129]    [Pg.287]    [Pg.136]    [Pg.525]    [Pg.308]    [Pg.24]    [Pg.168]    [Pg.98]    [Pg.98]    [Pg.100]    [Pg.137]    [Pg.159]    [Pg.33]    [Pg.54]    [Pg.108]    [Pg.4]    [Pg.38]    [Pg.46]    [Pg.47]    [Pg.73]    [Pg.84]    [Pg.87]    [Pg.89]    [Pg.116]    [Pg.226]    [Pg.238]    [Pg.245]    [Pg.264]    [Pg.264]    [Pg.264]    [Pg.265]    [Pg.272]    [Pg.275]    [Pg.278]   
See also in sourсe #XX -- [ Pg.499 , Pg.500 , Pg.501 , Pg.502 , Pg.503 , Pg.504 , Pg.505 , Pg.506 , Pg.507 , Pg.508 ]

See also in sourсe #XX -- [ Pg.447 ]




SEARCH



Proanthocyanidin

Proanthocyanidins

© 2024 chempedia.info