Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flasks for

Hydrolysis of Acetoxime. Place about i g. of the recrystallised oxime in a small distilling-flask (50 ml.), add 10 ml. of dilute HjSO, and heat gently until about half the solution has distilled over. Test [a] the aqueous distillate for acetone by the iodoform reaction (p.346), b) the residual solution in the distilling-flask for hydroxylamine by... [Pg.94]

Place 5 mi. of ethyl acetate in a 100 ml. round-bottomed flask, and add about 50 ml. of 10% sodium hydroxide solution, together with some fragments of ungiazed porcelain. Fit the flask with a reflux water-condenser, and boil the mixture gently over a wire gauze for 30 minutes. Now disconnect the condenser, and fit it by means of a bent delivery-tube (or knee-tube ) to the flask for direct distillation (Fig. 59, or Fig. 23(0), p. 45). Reheat the liquid, and collect the first 10 ml. of distillate, which will consist of a dilute aqueous solution of ethanol. Confirm the presence of ethanol by the iodoform test Test 3, p. 336). [Pg.99]

Oxamide differs from most aliphatic acid amides in being almost insoluble in water, and therefore can be readily prepared from the diethyl ester by Method 2(a). Place a mixture of 5 ml. of concentrated [d o-88o) ammonia solution and 5 ml. of water in a 25 ml. conical flask, for which a welTfitting cork is available. (The large excess of... [Pg.118]

Boil a mixture of 5 ml. (4 g.) of acetonitrile and 75 ml. of 10% aqueous sodium hydroxide solution in a 200 ml. flask under a refluxwater-condenser for 30 minutes, when hydrolysis will be complete. Detach the condenser and boil the solution in the open flask for a few minutes to drive off ull free ammonia. Then cool the solution, and add dilute sulphuric acid (i volume of concentrated acid 2 volumes of water)... [Pg.122]

Prepare a mixture of 25 ml. of concentrated nitric acid and 80 ml. of water in a 750 ml. flat-bottomed flask for which a steam-distillation fitting is available for subsequent use. Warm a mixture of 20 g. of phenol and 15 ml. of water gently in a small conical flask until the phenol is molten on shaking the... [Pg.170]

Then, while the diazonium solution is standing in ice-water, dissolve 55 g. of powdered copper sulphate (CuS04,5Ha0) in 200 ml. of water contained in a 1500 ml. flat-bottomed flask, for which a steam-distillation fitting is available for subsequent use. Place a thermometer in the copper sulphate solution and warm the latter to 60-65 . Now cautiously add a solution of 60 g. of powdered potassium cyanide in too ml. of water to the copper... [Pg.191]

Cool the solution thoroughly in ice-water, and then make it alkaline by the cautious addition (with stirring or shaking) of a solution of 80 g. of sodium hydroxide in ca, 150 ml. of water. Now isolate the free tertiary amine by steam-distillation into hydrochloric acid, etc., precisely as for the primary amine in Stage (D), but preferably using a smaller flask for the final distillation. Collect the 2-dimethylamino- -octane, b.p. 76-78715 mm. Yield, 13-14 g. At atmospheric pressure the amine has b.p. 187-188°. [Pg.227]

Dissolve I ml. of benzaldehyde and 0-4 ml. of pure acetone in 10 ml. of methylated spirit contained in a conical flask or widemouthed bottle of about 50 ml. capacity. Dilute 2 ml. of 10% aqueous sodium hydroxide solution with 8 ml. of water, and add this dilute alkali solution to the former solution. Shake the mixture vigorously in the securely corked flask for about 10 minutes (releasing the pressure from time to time if necessary) and then allow to stand for 30 minutes, with occasional shaking finally cool in ice-water for a few minutes. During the shaking, the dibenzal -acetone separates at first as a fine emulsion which then rapidly forms pale yellow crystals. Filter at the pump, wash well with water to eliminate traces of alkali, and then drain thoroughly. Recrystallise from hot methylated or rectified spirit. The dibenzal-acetone is obtained as pale yellow crystals, m.p. 112 yield, o 6 g. [Pg.231]

In place of the conical flask G, a small Buchner flask may be used with the calcium chloride tube fitted to the side-arm, but in either case a duplicate flask for the second fraction should be available. [Pg.241]

The principle of this method has been explained above. The reaction is best carried out in a wide-necked 250 ml. conical flask for which a cork having the usual two delivery-tubes for steam-distillation is available when the Strictly termed iV-methylaniline. t. Strictly termed iV,i -dimcthyliiniline. [Pg.249]

The reaction is best carried out in the apparatus used in the preparation of quinoline, a 1500 ml. flask being fitted with a wide-bore air-condenser carrying in turn a water-condenser a still-head to fit the flask for subsequent steam-distillation should be assembled in advance. [Pg.301]

If a phenol is not indicated, the solution may contain an aliphatic acid. Transfer to a distilling-flask, make definitely acid with dih H2SO4, and distil the volatile formic and acetic acids if present will distil over. If the distillation gives negative reactions, test the residual solution in the flask for oxalic, succinic, lactic, tartaric and citric acids and glycine, remembering that the solution is strongly acid. [Pg.399]

IsoValeric acid. Prepare dilute sulphuric acid by adding 140 ml. of concentrated sulphuric acid cautiously and with stirring to 85 ml. of water cool and add 80 g. (99 ml.) of redistilled woamyl alcohol. Place a solution of 200 g. of crystallised sodium dicliromate in 400 ml. of water in a 1-litre (or 1-5 litre) round-bottomed flask and attach an efficient reflux condenser. Add the sulphuric acid solution of the isoamyl alcohol in amaU portions through the top of the condenser shake the apparatus vigorously after each addition. No heating is required as the heat of the reaction will suffice to keep the mixture hot. It is important to shake the flask well immediately after each addition and not to add a further portion of alcohol until the previous one has reacted if the reaction should become violent, immerse the flask momentarily in ice water. The addition occupies 2-2-5 hours. When all the isoamyl alcohol has been introduced, reflux the mixture gently for 30 minutes, and then allow to cool. Arrange the flask for distillation (compare Fig. II, 13, 3, but with the thermometer omitted) and collect about 350 ml. of distillate. The latter consists of a mixture of water, isovaleric acid and isoamyl isovalerate. Add 30 g. of potassium not sodium) hydroxide pellets to the distillate and shake until dissolved. Transfer to a separatory funnel and remove the upper layer of ester (16 g.). Treat the aqueous layer contained in a beaker with 30 ml. of dilute sulphuric acid (1 1 by volume) and extract the liberated isovaleric acid with two... [Pg.355]

To obtain a maximum yield of the acid it is necessary to hydrolyse the by-product, iaoamyl iaovalerate this is most economically effected with methyl alcoholic sodium hydroxide. Place a mixture of 20 g. of sodium hydroxide pellets, 25 ml. of water and 225 ml. of methyl alcohol in a 500 ml. round-bottomed flask fitted with a reflux (double surface) condenser, warm until the sodium hydroxide dissolves, add the ester layer and reflux the mixture for a period of 15 minutes. Rearrange the flask for distillation (Fig. II, 13, 3) and distil off the methyl alcohol until the residue becomes pasty. Then add about 200 ml. of water and continue the distfllation until the temperature reaches 98-100°. Pour the residue in the flask, consisting of an aqueous solution of sodium iaovalerate, into a 600 ml. beaker and add sufficient water to dissolve any solid which separates. Add slowly, with stirring, a solution of 15 ml. of concentrated sulphuric acid in 50 ml. of water, and extract the hberated acid with 25 ml. of carbon tetrachloride. Combine this extract with extract (A), dry with a httle anhydrous magnesium or calcium sulphate, and distil off the carbon tetrachloride (Fig. II, 13, 4 150 ml. distiUing or Claisen flask), and then distil the residue. Collect the wovaleric acid 172-176°. The yield is 56 g. [Pg.356]

Place 100 g. of adipic acid in a 750 ml. round-bottomed flask and add successively 100 g. (127 ml.) of absolute ethyl alcohol, 250 ml. of sodium-dried benzene and 40 g. (22 ml.) of concentrated sulphuric acid (the last-named cautiously and with gentle swirling of the contents of the flask). Attach a reflux condenser and reflux the mixture gently for 5-6 hours. Pour the reaction mixture into excess of water (2-3 volumes), separate the benzene layer (1), wash it with saturated sodium bicarbonate solution until eflfervescence ceases, then with water, and dry with anhydrous magnesium or calcium sulphate. Remove most of the benzene by distillation under normal pressure until the temperature rises to 100° using the apparatus of Fig. II, 13, 4 but substituting a 250 ml. Claisen flask for the distilling flask then distil under reduced pressure and collect the ethyl adipate at 134-135°/17 mm. The yield is 130 g. [Pg.386]

Fit up a 1 -litre round-bottomed flask for steam distillation (Fig. II, 40,1) and place in it 22 g. of iodosobenzene (Section IV.25) made into a thin paste with water (1). Steam distil until almost all the iodobenzene has been removed (about 9 g.) cool the residue in the flask at once, filter the white solid with suction and dry in the air. Wash it with a little chloroform, filter with suction, and dry in the air upon filter paper. The yield is 10-5 g. It may be recrystallised from 800-900 ml. of water, lodoxybenzene melts with explosive decomposition at 237°,... [Pg.542]

Cool the reaction mixture to room temperature and add gradually a solution of 75 g. of sodium hydroxide in 125 ml. of water if the mixture boils during the addition of the alkah, cool again. The hydroxide of tin which is flrst precipitated should all dissolve and the solution should be strongly alkahne the anihne separates as an oil. Equip the flask for steam distillation as in Fig. II, 40, 1, and pass steam into the warm... [Pg.563]

Boil a mixture of 10 g. (10 ml.) of o-toluidine and 38 g. (35 ml.) of acetic anhydride in a 75 or 100 ml. Claisen flask fitted with a reflux condenser (Fig. Ill, 28, 1, but with trap replaced by a calcium chloride or cotton wool guard tube) for 1 hour. Arrange the flask for distillation under reduced pressure (compare Fig. II, 20, 1) and distil acetic acid and the excess of acetic anhydride pass over first, followed by the diacetyl derivative at 152-153°/20 mm, some mono-acetyl-o-toluidine (1-2 g.) remains in the flask. The yield of diacetyl-o-toluidine is 14-15 g, it is a colourless, somewhat unstable hquid, which slowly sohdifies to yield crystals, m.p. 18°, To prepare the (mono-) acetyl-o-toluidine, warm a mixture of 5 g. [Pg.578]

Hydrolysis of benzonitrile to benzoic acid. BoU 5 -1 g. (5 ml.) of benzo-nitrUe and 80 ml. of 10 per cent, sodium hydroxide solution in a 250 ml. round-bottomed flask fitted with a reflux water condenser until the condensed liquid contains no oUy drops (about 45 minutes). Remove the condenser, and boU the solution in an open flask for a few minutes to remove free ammonia. Cool the liquid, and add concentrated hydrochloric acid, cautiously with shaking, until precipitation of benzoic acid is complete. Cool, filter the benzoic acid with suction, and wash with cold water dry upon filter paper in the air. The benzoic acid (5-8 g.) thus obtained should be pure (m.p. 121°). Recrystal-lise a small quantity from hot water and redetermine the m.p. [Pg.609]


See other pages where Flasks for is mentioned: [Pg.62]    [Pg.116]    [Pg.118]    [Pg.144]    [Pg.162]    [Pg.185]    [Pg.267]    [Pg.273]    [Pg.356]    [Pg.4]    [Pg.88]    [Pg.222]    [Pg.238]    [Pg.273]    [Pg.311]    [Pg.368]    [Pg.375]    [Pg.403]    [Pg.415]    [Pg.431]    [Pg.452]    [Pg.467]    [Pg.468]    [Pg.469]    [Pg.487]    [Pg.492]    [Pg.511]    [Pg.513]    [Pg.564]    [Pg.580]    [Pg.608]   
See also in sourсe #XX -- [ Pg.47 , Pg.116 , Pg.117 , Pg.119 ]




SEARCH



Apparatus, adapter for steam distillations Claisen flask modified with column

Flasks

Flasks for distilling solids under reduced

For volumetric flasks

Fractional distillation under diminished flasks for

Installations for flasks and manifolds

© 2024 chempedia.info