Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fixed-bed reactors catalyst

Figure 2 Effect of sulphur on the relative activity profile of a fixed bed reactor catalyst (1000 time units) (x activity. relative mass sulphur... Figure 2 Effect of sulphur on the relative activity profile of a fixed bed reactor catalyst (1000 time units) (x activity. relative mass sulphur...
In conventional fixed-bed reactors, catalyst particles of various sizes are often randomly distributed, which may lead to inhomogeneous flow patterns. Near the reactor walls, the packing density is lower than the mean value, and faster flow of the fluid near the wall is unavoidable. As a result, reactants may bypass the catalyst particles, and the residence time distribution (RTD) will be broadened. Moreover, the nonuniform access of reactants to the catalytic surface diminishes the overall reactor performance and can lead to unexpected hot spots and even to reactor runaway in the case of exothermic reactions. [Pg.51]

The original German process used either carbonyl iron or electrolytic iron as hydrogenation catalyst (113). The fixed-bed reactor was maintained at 50—100°C and 20.26 MPa (200 atm) of hydrogen pressure, giving a product containing substantial amounts of both butynediol and butanediol. Newer, more selective processes use more active catalysts at lower pressures. In particular, supported palladium, alone (49) or with promoters (114,115), has been found useful. [Pg.107]

Mitsui Toatsu Chemical, Inc. disclosed a similar process usiag Raney copper (74) shortiy after the discovery at Dow, and BASF came out with a variation of the copper catalyst ia 1974 (75). Siace 1971 several hundred patents have shown modifications and improvements to this technology, both homogeneous and heterogeneous, and reviews of these processes have been pubHshed (76). Nalco Chemical Company has patented a process based essentially on Raney copper catalyst (77) ia both slurry and fixed-bed reactors and produces acrylamide monomer mainly for internal uses. Other producers ia Europe, besides Dow and American Cyanamid, iaclude AUied CoUoids and Stockhausen, who are beheved to use processes similar to the Raney copper technology of Mitsui Toatsu, and all have captive uses. Acrylamide is also produced ia large quantities ia Japan. Mitsui Toatsu and Mitsubishi are the largest producers, and both are beheved to use Raney copper catalysts ia a fixed bed reactor and to sell iato the merchant market. [Pg.135]

Recent advances in Eischer-Tropsch technology at Sasol include the demonstration of the slurry-bed Eischer-Tropsch process and the new generation Sasol Advanced Synthol (SAS) Reactor, which is a classical fluidized-bed reactor design. The slurry-bed reactor is considered a superior alternative to the Arge tubular fixed-bed reactor. Commercial implementation of a slurry-bed design requires development of efficient catalyst separation techniques. Sasol has developed proprietary technology that provides satisfactory separation of wax and soHd catalyst, and a commercial-scale reactor is being commissioned in the first half of 1993. [Pg.164]

The thermal catalytic route proposed involves heating the fresh reactant feed plus recycle up to 790°C and feeding this material into a M0S2 catalyst fixed-bed reactor operating at 0.1 MPa (1 atm). The route yields a production of H2 almost 50% higher than the decomposition of H2S route. [Pg.428]

Vanadium phosphoms oxide-based catalysts ate unstable in that they tend to lose phosphoms over time at reaction temperatures. Hot spots in fixed-bed reactors tend to accelerate this loss of phosphoms. This loss of phosphoms also produces a decrease in selectivity (70,136). Many steps have been taken, however, to aHeviate these problems and create an environment where the catalyst can operate at lower temperatures. For example, volatile organophosphoms compounds are fed to the reactor to mitigate the problem of phosphoms loss by the catalyst (137). The phosphoms feed also has the effect of controlling catalyst activity and thus improving catalyst selectivity in the reactor. The catalyst pack in the reactor may be stratified with an inert material (138,139). Stratification has the effect of reducing the extent of reaction pet unit volume and thus reducing the observed catalyst temperature (hot... [Pg.454]

Methyl-l-Pen ten e. This olefin is produced commercially by dimeriza tion of propylene in the presence of potassium-based catalysts at 150—160°C and - 10 MPa. Commercial processes utilize several catalysts, such as sodium-promoted potassium carbonate and sodium- and alurninum-promoted potassium hydroxide (12—14) in a fixed-bed reactor. The reaction produces a mixture of C olefins containing 80—85% of 4-methyl- 1-pentene. [Pg.425]

Typically, reactors require some type of catalyst. Reactors with catalyst can be of the fixed-bed style for fiuid-bed types. Fixed-bed reactors are the most common. The feed often enters the reactor at an elevated temperature and pressure. The reaction mixtures are often corrosive to carbon steel and require some type of stainless steel alloy or an alloy liner for protection. If the vessel wall is less than 6 mm, the vessel is constmcted of all alloy if alloy is provided. Thicker reactor walls can be fabricated with a stainless overlay over a carbon steel or other lower alloy base steel at less cost than an all-alloy wall constmction. [Pg.76]

Process. As soHd acid catalysts have replaced Hquid acid catalysts, they have typically been placed in conventional fixed-bed reactors. An extension of fixed-bed reactor technology is the concept of catalytic distillation being offered by CR L (48). In catalytic distillation, the catalytic reaction and separation of products occur in the same vessel. The concept has been appHed commercially for the production of MTBE and is also being offered for the production of ethylbenzene and cumene. [Pg.53]

Among continuous reactors, the dominant system used to produce parasubstituted alkylphenols is a fixed-bed reactor holding a soHd acid catalyst. Figure 3 shows an example of this type of reactor. The phenol and alkene are premixed and heated or cooled to the desired feed temperature. This mix is fed to the reactor where it contacts the porous soHd, acid-impregnated catalyst. A key design consideration for this type of reactor is the removal of the heat of reaction. [Pg.63]

The predominant process for manufacture of aniline is the catalytic reduction of nitroben2ene [98-95-3] ixh. hydrogen. The reduction is carried out in the vapor phase (50—55) or Hquid phase (56—60). A fixed-bed reactor is commonly used for the vapor-phase process and the reactor is operated under pressure. A number of catalysts have been cited and include copper, copper on siHca, copper oxide, sulfides of nickel, molybdenum, tungsten, and palladium—vanadium on alumina or Htbium—aluminum spinels. Catalysts cited for the Hquid-phase processes include nickel, copper or cobalt supported on a suitable inert carrier, and palladium or platinum or their mixtures supported on carbon. [Pg.231]

A process for the production of DPA from phenol and ammonia has been reported (25). Typically, the reaction is carried out continuously ia a fixed-bed reactor usiag an acidic alumiaa catalyst at 300°C—420°C. The first product formed is aniline which is subsequently converted to DPA. Consequently, the reaction can be carried out to simultaneously produce DPA and aniline, ia any desired ratio, simply by varyiag the molar ratios of phenol (and aniline) ia the reactor feed stream. [Pg.244]

Heat Release and Reactor Stability. Highly exothermic reactions, such as with phthaHc anhydride manufacture or Fischer-Tropsch synthesis, compounded with the low thermal conductivity of catalyst peUets, make fixed-bed reactors vulnerable to temperature excursions and mnaways. The larger fixed-bed reactors are more difficult to control and thus may limit the reactions to jacketed bundles of tubes with diameters under - 5 cm. The concerns may even be sufficiently large to favor the more complex but back-mixed slurry reactors. [Pg.519]

Tubular Fixed-Bed Reactors. Bundles of downflow reactor tubes filled with catalyst and surrounded by heat-transfer media are tubular fixed-bed reactors. Such reactors are used most notably in steam reforming and phthaUc anhydride manufacture. Steam reforming is the reaction of light hydrocarbons, preferably natural gas or naphthas, with steam over a nickel-supported catalyst to form synthesis gas, which is primarily and CO with some CO2 and CH. Additional conversion to the primary products can be obtained by iron oxide-catalyzed water gas shift reactions, but these are carried out ia large-diameter, fixed-bed reactors rather than ia small-diameter tubes (65). The physical arrangement of a multitubular steam reformer ia a box-shaped furnace has been described (1). [Pg.525]

For fixed-bed reactors containing rapidly deactivating catalysts, the scheduled changes ia operating variables to accommodate activity loss can have a marked effect on mn length. This is exemplified by acetylene hydrochiorination to produce vinyl chloride ia tubular fixed-bed reactors. Steel reactors,... [Pg.525]

SO2 gas is catalyticaHy oxidized to SO in a fixed bed reactor (converter) which operates adiabaticaHy in each catalyst pass. The heat of reaction raises the process gas temperature in the first pass to approximately 600°C (see Table 7). The temperature of hot gas exiting the first pass is then lowered to the desired second pass inlet temperature (430—450°C) by removing the heat of reaction in a steam superheater or second boiler. [Pg.185]

The Catofin process, which was formerly the property of Air Products (Houdry Division), uses a proprietary chromium catalyst in a fixed-bed reactor operating under vacuum. There are actually multiple reactors operating in cycHc fashion. In sequence, these reactors process feed for about nine minutes and are then regenerated for nine minutes. The chromium catalyst is reduced from Cr to Cr during the regeneration cycle. [Pg.368]


See other pages where Fixed-bed reactors catalyst is mentioned: [Pg.82]    [Pg.107]    [Pg.283]    [Pg.353]    [Pg.332]    [Pg.175]    [Pg.82]    [Pg.107]    [Pg.283]    [Pg.353]    [Pg.332]    [Pg.175]    [Pg.416]    [Pg.96]    [Pg.447]    [Pg.165]    [Pg.85]    [Pg.427]    [Pg.54]    [Pg.106]    [Pg.127]    [Pg.507]    [Pg.507]    [Pg.507]    [Pg.508]    [Pg.510]    [Pg.516]    [Pg.518]    [Pg.519]    [Pg.519]    [Pg.524]    [Pg.525]    [Pg.481]    [Pg.537]    [Pg.417]    [Pg.418]    [Pg.161]    [Pg.170]   
See also in sourсe #XX -- [ Pg.285 ]




SEARCH



Catalyst bed

Catalyst fixed bed

Catalyst reactors

Fixed catalysts

Reactors with a Fixed Bed of Catalyst

© 2024 chempedia.info