Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inhomogeneous flows

In general, liquid-phase reactions (Sc > 1) and fast chemistry are beyond the range of DNS. The treatment of inhomogeneous flows (e.g., a chemical reactor) adds further restrictions. Thus, although DNS is a valuable tool for studying fundamentals,4 it is not a useful tool for chemical-reactor modeling. Nonetheless, much can be learned about scalar transport in turbulent flows from DNS. For example, valuable information about the effect of molecular diffusion on the joint scalar PDF can be easily extracted from a DNS simulation and used to validate the micromixing closures needed in other scalar transport models. [Pg.123]

Figure 4.5. Sketch of how LEM can be applied to an inhomogeneous flow. At fixed time intervals, sub-domains from neighboring grid cells are exchanged to mimic advection and turbulent diffusion. Figure 4.5. Sketch of how LEM can be applied to an inhomogeneous flow. At fixed time intervals, sub-domains from neighboring grid cells are exchanged to mimic advection and turbulent diffusion.
The SR model can be extended to inhomogeneous flows (Tsai and Fox 1996a), and a Lagrangian PDF version (LSR model) has been developed and validated against DNS data (Fox 1997 Vedula et al. 2001). We will return to the LSR model in Section 6.10. [Pg.154]

Figure 5.16. The four-environment model divides a homogeneous flow into four environments, each with its own local concentration vector. The joint concentration PDF is thus represented by four delta functions. The area under each delta function, as well as its location in concentration space, depends on the rates of exchange between environments. Since the same model can be employed for the mixture fraction, the exchange rates can be partially determined by forcing the four-environment model to predict the correct decay rate for the mixture-fraction variance. The extension to inhomogeneous flows is discussed in Section 5.10. Figure 5.16. The four-environment model divides a homogeneous flow into four environments, each with its own local concentration vector. The joint concentration PDF is thus represented by four delta functions. The area under each delta function, as well as its location in concentration space, depends on the rates of exchange between environments. Since the same model can be employed for the mixture fraction, the exchange rates can be partially determined by forcing the four-environment model to predict the correct decay rate for the mixture-fraction variance. The extension to inhomogeneous flows is discussed in Section 5.10.
In (5.297), the interpolation parameter is defined separately for each component. Note, however, that unlike the earlier examples, there is no guarantee that the interpolation parameters will be bounded between zero and one. For example, the equilibrium concentration of intermediate species may be negligible despite the fact that these species can be abundant in flows dominated by finite-rate chemistry. Thus, although (5.297) provides a convenient closure for the chemical source term, it is by no means guaranteed to produce accurate predictions A more reliable method for determining the conditional moments is the formulation of a transport equation that depends explicitly on turbulent transport and chemical reactions. We will look at this method for both homogeneous and inhomogeneous flows below. [Pg.230]

The transport equation for Q can be extended to inhomogeneous flows (Klimenko 1990 Bilger 1993 Klimenko 1995 Klimenko and Bilger 1999) and to LES (Bushe and Steiner... [Pg.233]

The model can be written in terms of )n. However, we shall see that the extension to inhomogeneous flows is trivial when (s) is used. [Pg.241]

As done below for two examples, expressions can also be derived for the scalar variance starting from the model equations. For the homogeneous flow under consideration, micromixing controls the variance decay rate, and thus y can be chosen to agree with a particular model for the scalar dissipation rate. For inhomogeneous flows, the definitions of G and M(n) must be modified to avoid spurious dissipation (Fox 1998). We will discuss the extension of the model to inhomogeneous flows after looking at two simple examples. [Pg.242]

Note, however, that in the absence of micromixing, )n is constant so that this term will be null. Nevertheless, when micromixing is present, the spurious scalar dissipation term will be non-zero, and thus decrease the scalar variance for inhomogeneous flows. [Pg.246]

As compared with the other closures discussed in this chapter, computation studies based on the presumed conditional PDF are relatively rare in the literature. This is most likely because of the difficulties of deriving and solving conditional moment equations such as (5.399). Nevertheless, for chemical systems that can exhibit multiple reaction branches for the same value of the mixture fraction,162 these methods may offer an attractive alternative to more complex models (such as transported PDF methods). Further research to extend multi-environment conditional PDF models to inhomogeneous flows should thus be pursued. [Pg.255]

The procedure followed above can be used to develop a multi-environment conditional LES model starting from (5.396). In this case, all terms in (5.399) will be conditioned on the filtered velocity and filtered compositions,166 in addition to the residual mixture-fraction vector = - . In the case of a one-component mixture fraction, the latter can be modeled by a presumed beta PDF with mean f and variance (f,2>. LES transport equations must then be added to solve for the mixture-fraction mean and variance. Despite this added complication, all model terms carry over from the original model. The only remaining difficulty is to extend (5.399) to cover inhomogeneous flows.167 As with the conditional-moment closure discussed in Section 5.8 (see (5.316) on p. 215), this extension will be non-trivial, and thus is not attempted here. [Pg.258]

Of all of the methods reviewed thus far in this book, only DNS and the linear-eddy model require no closure for the molecular-diffusion term or the chemical source term in the scalar transport equation. However, we have seen that both methods are computationally expensive for three-dimensional inhomogeneous flows of practical interest. For all of the other methods, closures are needed for either scalar mixing or the chemical source term. For example, classical micromixing models treat chemical reactions exactly, but the fluid dynamics are overly simplified. The extension to multi-scalar presumed PDFs comes the closest to providing a flexible model for inhomogeneous turbulent reacting flows. Nevertheless, the presumed form of the joint scalar PDF in terms of a finite collection of delta functions may be inadequate for complex chemistry. The next step - computing the shape of the joint scalar PDF from its transport equation - comprises transported PDF methods and is discussed in detail in the next chapter. Some of the properties of transported PDF methods are listed here. [Pg.258]

Despite the ability of the GLM to reproduce any realizable Reynolds-stress model, Pope (2002b) has shown that it is not consistent with DNS data for homogeneous turbulent shear flow. In order to overcome this problem, and to incorporate the Reynolds-number effects observed in DNS, a stochastic model for the acceleration can be formulated (Pope 2002a Pope 2003). However, it remains to be seen how well such models will perform for more complex inhomogeneous flows. In particular, further research is needed to determine the functional forms of the coefficient matrices in both homogeneous and inhomogeneous turbulent flows. [Pg.277]

In an effort to improve the description of the Reynolds stresses in the rapid distortion turbulence (RDT) limit, the velocity PDF description has been extended to include directional information in the form of a random wave vector by Van Slooten and Pope (1997). The added directional information results in a transported PDF model that corresponds to the directional spectrum of the velocity field in wavenumber space. The model thus represents a bridge between Reynolds-stress models and more detailed spectral turbulence models. Due to the exact representation of spatial transport terms in the PDF formulation, the extension to inhomogeneous flows is straightforward (Van Slooten et al. 1998), and maintains the exact solution in the RDT limit. The model has yet to be extensively tested in complex flows (see Van Slooten and Pope 1999) however, it has the potential to improve greatly the turbulence description for high-shear flows. More details on this modeling approach can be found in Pope (2000). [Pg.280]

Because the conditional scalar Laplacian is approximated in the FP model by a non-linear diffusion process (6.91), (6.145) will not agree exactly with CMC. Nevertheless, since transported PDF methods can be easily extended to inhomogeneous flows,113 which are problematic for the CMC, the FP model offers distinct advantages. [Pg.304]

For inhomogeneous flows, turbulent transport will bring fluid particles with different histories to a given point in the flow. Thus, it cannot be expected that (6.143) will be exact in such flows. Nonetheless, since the conditional moments will be well defined, the FP model may still provide a useful approximation for molecular mixing. [Pg.304]

Note that the turbulent diffusivity Tt(x, t) must be provided by a turbulence model, and for inhomogeneous flows its spatial gradient appears in the drift term in (6.177). If this term is neglected, the notional-particle location PDF, fx>, will not remain uniform when VTt / 0, in which case the Eulerian PDFs will not agree, i.e., i=- f0. [Pg.313]

As noted above, in the applications of Lagrangian PDF methods to inhomogeneous flows, evaluation of the particle-pressure field can be problematic. In order to avoid this difficulty, hybrid PDF methods have been developed (Muradoglu, et al. 1999 Jenny et al. [Pg.314]

As discussed in Chapter 7, when modeling inhomogeneous flows the value of At must be chosen also to be smaller than the minimum convective and diffusive time scales of the flow. [Pg.327]


See other pages where Inhomogeneous flows is mentioned: [Pg.340]    [Pg.340]    [Pg.246]    [Pg.292]    [Pg.356]    [Pg.9]    [Pg.11]    [Pg.11]    [Pg.11]    [Pg.11]    [Pg.51]    [Pg.57]    [Pg.63]    [Pg.125]    [Pg.127]    [Pg.130]    [Pg.132]    [Pg.132]    [Pg.132]    [Pg.136]    [Pg.219]    [Pg.219]    [Pg.225]    [Pg.233]    [Pg.234]    [Pg.241]    [Pg.245]    [Pg.247]    [Pg.251]    [Pg.289]    [Pg.329]    [Pg.341]   


SEARCH



Conditional moment closures inhomogeneous flow

Extension to inhomogeneous flows

Inhomogeneity

Inhomogenities

Micromixing models inhomogeneous flows

© 2024 chempedia.info