Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fischer-Tropsch synthesis selectivity

In some cases, the cobalt precursor tends to interact with the support. This interaction impedes the generation of active cobalt sites during reduction. Normally, it leaves a fraction of the cobalt chemically inactive. According to Jacobs et al. [1], the strength of the interaction for the three most common supports follows the order y-alumina > titania > silica. The presence of a promoter such as rhenium facilitates reduction of cobalt species interacting with the support [2-4]. However, cobalt is usually not completely reduced after the normal reduction procedures. The effect of rhenium for Fischer-Tropsch synthesis selectivity was recently described in detail by Storsaeter et al. [5]. It was concluded that presence of rhenium shifts the product distribution to heavier compounds, quantified by the C5+ selectivity. [Pg.256]

Fischer Tropsch synthesis is catalyzed by a variety of transition metals such as iron, nickel, and cobalt. Iron is the preferred catalyst due to its higher activity and lower cost. Nickel produces large amounts of methane, while cobalt has a lower reaction rate and lower selectivity than iron. By comparing cobalt and iron catalysts, it was found that cobalt promotes more middle-distillate products. In FTS, cobalt produces... [Pg.124]

Dr. Moeller A methanation plant does not have a problem of selectivity. Whether you operate at low or high temperature, when using a nickel catalyst you will form only methane and no higher hydrocarbon. But with the Fischer-Tropsch synthesis, you have a wide range of possible products which can be formed. If you want to have a certain product, you must keep your temperature at a certain constant value. [Pg.176]

Fischer-Tropsch synthesis products contain also high quantities of n-a-olefins that can be recovered by selective sorption processes with suitable molecular sieves [19]. A large-scale Fischer-Tropsch synthesis plant operates in South Africa [20]. Another plant was started in Indonesia in 1993 [21]. [Pg.10]

Alkali promoters are often used for altering the catalytic activity and selectivity in Fischer-Tropsch synthesis and the water-gas shift reaction, where C02 adsorption plays a significant role. Numerous studies have investigated the effect of alkalis on C02 adsorption and dissociation on Cu, Fe, Rh, Pd, A1 and Ag6,52 As expected, C02 always behaves as an electron acceptor. [Pg.42]

The catalytic partial oxidation of methane for the production of synthesis gas is an interesting alternative to steam reforming which is currently practiced in industry [1]. Significant research efforts have been exerted worldwide in recent years to develop a viable process based on the partial oxidation route [2-9]. This process would offer many advantages over steam reforming, namely (a) the formation of a suitable H2/CO ratio for use in the Fischer-Tropsch synthesis network, (b) the requirement of less energy input due to its exothermic nature, (c) high activity and selectivity for synthesis gas formation. [Pg.443]

The potential of carbon nanomaterials for the Fischer-Tropsch synthesis was investigated by employing three different nanomaterials as catalyst supports. Herringbone (HB) and platelet (PL) type nanofibers as well as multiwalled (MW) nanotubes were examined in terms of stability, activity, and selectivity for Fischer-Tropsch synthesis (FTS). [Pg.17]

Yu, Z., Borg, 0., Chen, D., Enger, B. C., Frpseth, V., Rytter, E., Wigum, H., and Holmen, A. 2006. Carbon nanofiber supported cobalt catalysts for Fischer-Tropsch synthesis with high activity and selectivity. Catalysis Letters 109 43 -7. [Pg.29]

Krishnamoorthy, S., Tu, M., Ojeda, M. P., Pinna, D., and Iglesia, E. 2002. An investigation of the effects of water on rate and selectivity for the Fischer-Tropsch synthesis on cobalt-based catalysts. J. Catal. 211 422-33. [Pg.46]

Bertole, C. J., Kiss, G., and Mims, C. A. 2004. The effect of surface-active carbon on hydrocarbon selectivity in the cobalt-catalyzed Fischer-Tropsch synthesis. J. Catal. 223 309-18. [Pg.81]

Iglesia, E., Reyes, S. C., Madon, R. J., and Soled, S. L. 1993. Selectivity control and catalyst design in the Fischer-Tropsch synthesis Sites, pellets, and reactors. Adv. Catal. 39 221-302. [Pg.118]

Summary of Catalyst Composition and Reaction Conditions Selected for Comparing Fischer-Tropsch Synthesis Activity in CSTR... [Pg.141]

Ngantsoue-Hoc, W., Zhang, Y., O Brien, R.J., Luo, M., and Davis, B.H. 2002. Fischer-Tropsch synthesis Activity and selectivity for Group I alkali promoted iron-based catalysts. Appl. Catal. 236 77-89. [Pg.145]

Iglesia, E., Soled, S.L., and Fiato, R.A. 1992. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J. Catal. 137 212-24. [Pg.164]

Comparing heterogeneous Fischer-Tropsch synthesis with homogeneous olefin hydroformylation can be seen as a source for understanding catalytic principles, particularly because the selectivity is complex and therefore highly informative. Reliable analytical techniques must be readily available. [Pg.181]

The most difficult problem to solve in the design of a Fischer-Tropsch reactor is its very high exothermicity combined with a high sensitivity of product selectivity to temperature. On an industrial scale, multitubular and bubble column reactors have been widely accepted for this highly exothermic reaction.6 In case of a fixed bed reactor, it is desirable that the catalyst particles are in the millimeter size range to avoid excessive pressure drops. During Fischer-Tropsch synthesis the catalyst pores are filled with liquid FT products (mainly waxes) that may result in a fundamental decrease of the reaction rate caused by pore diffusion processes. Post et al. showed that for catalyst particle diameters in excess of only about 1 mm, the catalyst activity is seriously limited by intraparticle diffusion in both iron and cobalt catalysts.1... [Pg.216]

Van der Laan, G.P., Beenackers, A.A.C.M. 1999. Hydrocarbon selectivity model for the gas-solid Fischer-Tropsch synthesis on precipitated iron catalysts. Ind. Eng. Chem. Res. 38 1277. [Pg.241]

Hilmen, A.M., Lindvag, O.A., Bergene, E., Schanke, D., Eri, S., and Holmen, A. 2001. Selectivity and activity changes upon water addition during Fischer-Tropsch synthesis. Stud. Surf. Sci. Catal. 135 295-300. [Pg.266]

Iron-based Fischer-Tropsch synthesis (FTS) catalysts are preferred for synthesis gas with a low H2/CO ratio (e.g., 0.7) because of their excellent activity for the water-gas shift reaction, lower cost, lower methane selectivity, high olefin... [Pg.270]

Van Der Laan, G. P., and Beenackers, A. A. C. M. 1999. Kinetics and selectivity of the Fischer-Tropsch synthesis A literature review. Catalysis Reviews—Science and Engineering 41 255-318. [Pg.292]

In this work, a detailed kinetic model for the Fischer-Tropsch synthesis (FTS) has been developed. Based on the analysis of the literature data concerning the FT reaction mechanism and on the results we obtained from chemical enrichment experiments, we have first defined a detailed FT mechanism for a cobalt-based catalyst, explaining the synthesis of each product through the evolution of adsorbed reaction intermediates. Moreover, appropriate rate laws have been attributed to each reaction step and the resulting kinetic scheme fitted to a comprehensive set of FT data describing the effect of process conditions on catalyst activity and selectivity in the range of process conditions typical of industrial operations. [Pg.294]

Within each syncrude type some variation is introduced by the operating conditions of Fischer-Tropsch synthesis, such as pressure and H2 CO ratio, as well as by the Fischer-Tropsch reactor type. These variations cannot be ignored, and ultimately they have an impact on the refinery design. During the subsequent discussion it will become apparent that the selection of the Fischer-Tropsch technology influences not only the refinery design, but also the efficiency with which different products can be produced. [Pg.333]

Use of molten salts as solvent allows easy separation of organic products by distillation (376), and in this way PtCl2 with tetraalkylammonium salts of SnCl3 and GeCl3 has been used to selectively hydrogenate 1,5,9-cyclododecatriene to cyclododecene the salts in this case act as both solvent and ligand (377). A molten salt medium has been used in a homogeneously catalyzed Fischer-Tropsch synthesis (see Section VI,B). [Pg.368]

Fischer-Tropsch synthesis could be "tailored by the use of iron, cobalt and ruthenium carbonyl complexes deposited on faujasite Y-type zeolite as starting materials for the preparation of catalysts. Short chain hydrocarbons, i.e. in the C-j-Cq range are obtained. It appears that the formation and the stabilization of small metallic aggregates into the zeolite supercage are the prerequisite to induce a chain length limitation in the hydrocondensation of carbon monoxide. However, the control of this selectivity through either a definite particle size of the metal or a shape selectivity of the zeolite is still a matter of speculation. Further work is needed to solve this dilemna. [Pg.201]

Mass transfer effects are very important for the selectivity in the Fischer-Tropsch synthesis. Even though the reactants are in the gas phase, the catalyst pores will be filled with liquid products. Diffusion in the liquid phase is about 3 orders of magnitude slower than in the gas phase and even slow reactions may become diffusion limited. Diffusion limitations may occur through limitation on the arrival of CO to the active points or through the limited removal of reactive products.8,9... [Pg.11]


See other pages where Fischer-Tropsch synthesis selectivity is mentioned: [Pg.262]    [Pg.81]    [Pg.2377]    [Pg.52]    [Pg.285]    [Pg.337]    [Pg.159]    [Pg.26]    [Pg.83]    [Pg.142]    [Pg.148]    [Pg.179]    [Pg.244]    [Pg.244]    [Pg.245]    [Pg.315]    [Pg.98]    [Pg.276]    [Pg.304]    [Pg.327]    [Pg.11]   
See also in sourсe #XX -- [ Pg.16 , Pg.100 , Pg.107 ]




SEARCH



Fischer-Tropsch synthesi

Fischer-Tropsch synthesis

Fischer-Tropsch synthesis olefin selectivity

Fischer-Tropsch synthesis selectivity control

Selected Syntheses

Selectivity of Fischer-Tropsch synthesis

Synthesis selectivity

© 2024 chempedia.info