Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Finings viscosity

In addn to requirements with respect to nitrogen content, NC must comply with requirements of the 65.5°KI 134.5°Heat Tests. Grades A D NC must not be less than 99% sol in eth-alc mixt. Grade AfType I), Gd C Gd D NC must contain not more than 0.4% ash and not more than 0.4% material insol in acet. Other requirements such as fineness viscosity may,also be specified. Explosive other props of military grade NC are discussed under individual types, below... [Pg.498]

Carbon disulphide is an excellent solvent for fats, oils, rubber, sulphur, bromine and iodine, and is used industrially as a solvent for extraction. It is also used in the production of viscose silk, when added to wood cellulose impregnated with sodium hydroxide solution, a viscous solution of cellulose xanthate is formed, and this can be extruded through a fine nozzle into acid, which decomposes the xanthate to give a glossy thread of cellulose. [Pg.202]

A frequently used example of Oldroyd-type constitutive equations is the Oldroyd-B model. The Oldroyd-B model can be thought of as a description of the constitutive behaviour of a fluid made by the dissolution of a (UCM) fluid in a Newtonian solvent . Here, the parameter A, called the retardation time is de.fined as A = A (r s/(ri + s), where 7]s is the viscosity of the solvent. Hence the extra stress tensor in the Oldroyd-B model is made up of Maxwell and solvent contributions. The Oldroyd-B constitutive equation is written as... [Pg.12]

Sepro Conta.iner, The Sepro container consists of a collapsible plastic bag fitted into a standard three-piece, tin-plated container such as a 202 X 214, 202 x 406, or 202 x 509 can. The product is placed within the bag, and the propellant is added through the bottom of the container, which is fitted with a one-way valve. There is no limitation on the viscosity of the product but compatibiUty with the plastic bag must be considered. A free-dowing hquid can be dispensed either as a stream or a fine spray, depending on the type of valve employed. A viscous material is often dispensed as a stream. This system has been used for caulking compounds, postfoaming gels, and depilatories. [Pg.351]

The dark blue solution containing 5—10% of cellulose with a DP of 1000—2000 is filtered through a series of plate-and-frame filter presses using fine mesh metal screens to remove any particles that might block the spinneret holes. It is then deaerated under vacuum and stored ready for spinning. Unlike viscose dope, the cuprammonium cellulose [9050-09-3] solution is relatively stable. [Pg.351]

D. Mach, "Experiences with Fine Deniei Viscose and Modal Fibres," Proceedings of the 28 th Dombim International Man Made Fibres Conference, Sept. 1989. [Pg.355]

Glass is usually melted and fined at viscosities between 5 and 50 Pa-s (50—500 P) but forming and final viscosity requirements vary gready. The ranges of viscosity for various forming methods ate compared in Figure 7. [Pg.297]

Low molecular weight (1000—5000) polyacrylates and copolymers of acryflc acid and AMPS are used as dispersants for weighted water-base muds (64). These materials, 40—50% of which is the active polymer, are usually provided in a Hquid form. They are particularly useful where high temperatures are encountered or in muds, which derive most of their viscosity from fine drill soHds, and polymers such as xanthan gum and polyacrylamide. Another high temperature polymer, a sulfonated styrene maleic—anhydride copolymer, is provided in powdered form (65,66). AH of these materials are used in relatively low (ca 0.2—0.7 kg/m (0.5—2 lb /bbl)) concentrations in the mud. [Pg.180]

Ophthalmic ointments usually contain petrolatum as the base. The petrolatum is sterilized by dry heat and combined with the sterile dmg powder under aseptic conditions. Ophthalmic suspensions contain very fine (- 10 ji) particle sized soHds suspended in an aqueous vehicle. The vehicle is adjusted to isotonicity and viscosity-increasing excipients, chelating agents, and surfactants also may be needed. The aqueous vehicle in these cases is generally autoclaved and mixed with sterile dmg powder asceptically (30). [Pg.234]

Rotational Molding. Hodow articles and large, complex shapes are made by rotational mol ding, usuady from polyethylene powder of relatively low viscosity (57—59). The resin is in the form of a fine powder. A measured quantity is placed inside an aluminum mold and the mold is heated in an oven and rotated at low speed. The resin sinters and fuses, coating the inside of the mold. The mold is then cooled by water spray and the part solidifies, dupHcating the inside of the mold. [Pg.143]

Because mass flow bins have stable flow patterns that mimic the shape of the bin, permeabihty values can be used to calculate critical, steady-state discharge rates from mass flow hoppers. Permeabihty values can also be used to calculate the time required for fine powders to settle in bins and silos. In general, permeabihty is affected by particle size and shape, ie, permeabihty decreases as particle size decreases and the better the fit between individual particles, the lower the permeabihty moisture content, ie, as moisture content increases, many materials tend to agglomerate which increases permeabihty and temperature, ie, because the permeabihty factor, K, is inversely proportional to the viscosity of the air or gas in the void spaces, heating causes the gas to become more viscous, making the sohd less permeable. [Pg.555]

Capillary Viscometers. Capillary flow measurement is a popular method for measuring viscosity (21,145,146) it is also the oldest. A Hquid drains or is forced through a fine-bore tube, and the viscosity is determined from the measured flow, appHed pressure, and tube dimensions. The basic equation is the Hagen-Poiseuike expression (eq. 17), where Tj is the viscosity, r the radius of the capillary, /S.p the pressure drop through the capillary, IV the volume of hquid that flows in time /, and U the length of the capillary. [Pg.180]

Some concerns directly related to a tomizer operation include inadequate mixing of Hquid and gas, incomplete droplet evaporation, hydrodynamic instabiHty, formation of nonuniform sprays, uneven deposition of Hquid particles on soHd surfaces, and drifting of small droplets. Other possible problems include difficulty in achieving ignition, poor combustion efficiency, and incorrect rates of evaporation, chemical reaction, solidification, or deposition. Atomizers must also provide the desired spray angle and pattern, penetration, concentration, and particle size distribution. In certain appHcations, they must handle high viscosity or non-Newtonian fluids, or provide extremely fine sprays for rapid cooling. [Pg.334]

Tar sand feed contains a certain portion of fine minerals that, if allowed to build up in concentration in the middlings, increases viscosity and eventually dismpts settling ia the separation cell. The drag stream is required as a purge in order to control the fines concentration in the middlings. The amounts of water that can enter with the feed and leave with the separation cell tailings and froth are relatively fixed. Thus, the size of the drag stream determines the makeup water requirement for the separation cell. [Pg.358]

Vinylidene Chloride Copolymer Foams. Low density, fine-celled VDC copolymer foams can be made by extmsion of a mixture of vinylidene chloride copolymer and a blowing agent at 120—150°C (190). The formulation must contain heat stabilizers, and the extmsion equipment must be made of noncatalytic metals to prevent accelerated decomposition of the polymer. The low melt viscosity of the VDC copolymer formulation limits the size of the foam sheet that can be extmded. [Pg.443]

Liquid Injection. Liquid injection units are the most common type of incinerator today for the destmction of Hquid hazardous wastes such as solvents. Atomizers break the Hquid into fine droplets (100—150 microns) which allows the residence time to be extremely short (0.5—2.5 s). The viscosity of the waste is very important the waste must be both pumpable and capable of being atomized into fine droplets. Both gases and Hquids can be incinerated in Hquid injection units. Gases include organic streams from process vents and those from other thermal processes in the latter case, the Hquid injection incinerator operates as an afterburner. Aqueous wastes containing less than 75% water can be incinerated in Hquid injection units. [Pg.169]


See other pages where Finings viscosity is mentioned: [Pg.2767]    [Pg.142]    [Pg.23]    [Pg.315]    [Pg.349]    [Pg.352]    [Pg.75]    [Pg.26]    [Pg.350]    [Pg.248]    [Pg.483]    [Pg.406]    [Pg.279]    [Pg.418]    [Pg.546]    [Pg.174]    [Pg.176]    [Pg.189]    [Pg.513]    [Pg.48]    [Pg.274]    [Pg.307]    [Pg.469]    [Pg.56]    [Pg.423]    [Pg.480]    [Pg.8]    [Pg.227]    [Pg.228]    [Pg.228]    [Pg.55]    [Pg.163]    [Pg.360]    [Pg.366]    [Pg.272]   


SEARCH



Fine relative viscosity

Finings intrinsic viscosity

Viscosity fine effect

© 2024 chempedia.info