Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Filtration in cell separation

Practical Aspects of Tangential Flow Filtration in Cell Separations... [Pg.58]

Applications Of Tangential Flow Filtration In Cell Separation... [Pg.71]

Couturier S., Valat M., Vaxelaire J. and Puiggali J.R., 2003. Liquid pressure measurement in filtration-compression cell, Separ. Sci. TechnoL, 38, 1051-1068. [Pg.401]

Filtration Filtration (qv) is appHed in blood cell separation to remove leukocytes from ted blood cell (RBC) and platelet concentrates. Centtifugational blood cell separators do not reduce white blood cells (WBC) in red cell and platelet products sufficiently to avoid clinical complications such as GvHD and alloimmunization. A post-apheresis filtration step is needed to further reduce the WBC load. Modem filters are capable of a 3-log reduction in white cell contamination of the blood product, eg, apheresis single-donor platelet units having a typical white cell contamination of 5 x 10 white cells in 4 x 10 platelets can be reduced to a 5 x 10 white cell contamination, a sufficiently low number to avoid severe transfusion reactions. [Pg.523]

Regardless of the location of the protein and its state, cell separation needs to be inemensive, simple, and reliable, as large amounts of fermentation-broth dilute in the desired product may be handled. The objectives are to obtain a well-clarified supernatant and solids of maximum dryness, avoiding contamination by using a contained operation. Centrifugation or crossflow filtration is t ically used for cell separation, and both unit operations can be run in a continuous-flow mode [Datar and Rosen, in Stephanopoulos (ed.), op. cit., pp. 369-503]. In recent years, e3q>anded-bea adsorption has become an alternative. It combines broth clarification and adsorption separation in a single step. [Pg.73]

The purification of bacterial constituents usually starts in a very conventional way with an extraction step of the crude broth at neutral or slightly acidic pH. Mycelium-forming organisms are separated by filtration, and the cell mass and the filtrate are extracted separately. For the liquid phase, adsorber resins allow high recovery rates of metabolites and low process costs due to repeated use of the resins. If liquid-liquid extraction has to be applied, medium or highly polar solvents are favored. Ethyl acetate is the solvent of choice, and only in few cases is butanol superior. To extract the moist cell material, ethyl acetate, acetone or dichloromethane/methanol can be used. [Pg.229]

Alternatively, separation of cells from media can be achieved with the filtration of cell suspension through membranes with defined pore size [6]. This approach takes advantage of the particle size based on size differences between cells (2-10 pm in diameter) and media (colloids of less than a few nm in diameter). Many types of filtration designs and membrane supports are available, as well as a wide range of pore sizes, to aid large-scale filtration (Figure 4.15). [Pg.72]

When planning an industrial-scale bioprocess, the main requirement is to scale up each of the process steps. As the principles of the unit operations used in these downstream processes have been outlined in previous chapters, at this point we discuss only examples of practical applications and scaling-up methods of two unit operations that are frequently used in downstream processes (i) cell separation by filtration and microfiltration and (ii) chromatography for fine purification of the target products. [Pg.237]

PORE. I A minute cavity in epidermal tissue as in skin, leaves, or leather, having a capillary channel to the surface that permits transport of water vapor from within outward but not the reverse. 2. A void of interstice between particles of a solid such as sand minerals or powdered metals, that permits passage of liquids or gases through the material in either direction. I11 some structures, such as gaseous diffusion barriers and molecular sieves, the pores ate of molecular dimensions, i.e 4-10 A units. Such microporous structures are useful for filtration and molecular separation purposes in various industrial operations. 3. A cell in a spongy structure made by gas formation (foamed plastic) that absorbs water on immersion but releases it when stressed. [Pg.1358]

The following processes can be described as selective therapeutic plasmapheresis. In a first step, blood is withdrawn from the patient and separated by crossflow filtration in a hollow-fiber membrane cartridge water and some plasma solutes are transferred through a semipermeable membrane under a convection process. The transmembrane pressure applied from blood to filtrate compartment ensures flow and mass transfers. Then, the filtrate perfuses the adsorption columns where toxins are retained and is finally mixed with blood cells and other plasma components before returning to the patient (Figure 18.11). [Pg.428]

When bioreactors coupled to cell retention devices are used, it is also necessary to evaluate the scale-up of the cell separation equipment. In the case of the spin-filter (see Chapter 11), parameters such as filter rotation velocity and the ratio of filtration area to bioreactor working volume are particularly relevant (Deo et at, 1996). [Pg.251]

Filtration is a unit operation commonly employed nowadays in biotechnological processes. In this unit operation, a filter medium acts as a physical barrier to particles larger than its pores. Traditional filtration devices such as filter presses and rotary vacuum drum filters have so far found no application for the separation of animal cells. Nevertheless, membrane filters are commonly employed, as well as some alternative filter designs such as spin-filters. In the next sections, the most common types of filters used for animal cell separation will be discussed. [Pg.285]

Microfiltration. Microfiltration, the use of tangential flow anisotropic membranes to permeate the product of choice while retaining solids, can be an attractive cell separation technique because it does not require the use of flocculants or filter aids. It is, in principle, a more technically sophisticated version of classic dead-end filtration processes. Microfiltration yields can be low due to progressive fouling of membranes. Advanced engineering has overcome many of the early... [Pg.1332]

The losses with the filtrate were determined under static conditions a foam with a known volume was prepared from a definite liquid volume in a separate cell this foam was then dried in the same cell by increasing the pressure to Ap = 1.6 kPa [25,67]. Variations in... [Pg.690]

After the process of fermentation is over, the exhausted bacteria can be separated from the broth by filtration. This cell mass has a number of names, such as microbial biomass or single cell protein (SCP). Microbial biomass is a side product of all fermentation processes but in some cases it is actually the sole target product. Bacterial cells have a high content of protein, but are low in fat and cholesterol. This explains the names single cell protein (SCP) or microbial protein. SCP is mainly used as an additive in animal feed to enhance protein content. In principle, it is also safe for human food use, but the acceptance has been low until now. [Pg.309]


See other pages where Filtration in cell separation is mentioned: [Pg.11]    [Pg.520]    [Pg.523]    [Pg.2057]    [Pg.2057]    [Pg.2058]    [Pg.76]    [Pg.70]    [Pg.6]    [Pg.139]    [Pg.158]    [Pg.158]    [Pg.158]    [Pg.238]    [Pg.371]    [Pg.363]    [Pg.588]    [Pg.162]    [Pg.110]    [Pg.97]    [Pg.287]    [Pg.20]    [Pg.26]    [Pg.1815]    [Pg.1815]    [Pg.1816]   
See also in sourсe #XX -- [ Pg.224 ]




SEARCH



Cell separation

Cell separators

© 2024 chempedia.info