Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Filtration filtering media

In cross-flow flltration, the wastewater flows under pressure at a fairly high velocity tangentially or across the filter medium. A thin layer of solids form on the surface of the medium, but the high liquid velocity keeps the layer from building up. At the same time, the liquid permeates the membrane producing a clear filtrate. Filter media may be ceramic, metal (e.g., sintered stainless steel or porous alumina), or a polymer membrane (cellulose acetate, polyamide, and polyacrylonitrile) with pores small enough to exclude most suspended particles. Examples of cross filtration are microfiltration with pore sizes ranging from 0.1 to 5 pm and ultrafiltration with pore sizes from 1 pm down to about 0,001 pm. [Pg.216]

Filtration. In filtration, suspended solid particles in a liquid or gas are removed by passing the mixture through a porous medium that retains the particles and passes the fluid. The solid can be retained on the surface of the filter medium, which is cake, filtration, or captured within the filter medium, which is depth filtration. The filter medium can be arranged in many ways. [Pg.73]

Deep Bed Filters. Deep bed filtration is fundamentally different from cake filtration both in principle and appHcation. The filter medium (Fig. 4) is a deep bed with pore size much greater than the particles it is meant to remove. No cake should form on the face of the medium. Particles penetrate into the medium where they separate due to gravity settling, diffusion, and inertial forces attachment to the medium is due to molecular and electrostatic forces. Sand is the most common medium and multimedia filters also use garnet and anthracite. The filtration process is cycHc, ie, when the bed is full of sohds and the pressure drop across the bed is excessive, the flow is intermpted and solids are backwashed from the bed, sometimes aided by air scouring or wash jets. [Pg.387]

Addition of Inert Filter Aids. FUtet aids ate rigid, porous, and highly permeable powders added to feed suspensions to extend the appheabUity of surface filtration. Very dilute or very fine and slimy suspensions ate too difficult to filter by cake filtration due to fast pressure build-up and medium blinding addition of filter aids can alleviate such problems. Filter aids can be used in either or both of two modes of operation, ie, to form a precoat which then acts as a filter medium on a coarse support material called a septum, or to be mixed with the feed suspension as body feed to increase the permeabihty of the resulting cake. [Pg.389]

Electrophoresis and electro osmosis can be used to enhance conventional cake filtration. Electrodes of suitable polarity are placed on either side of the filter medium so that the incoming particles move toward the upstream electrode, away from the medium. As most particles carry negative charge, the electrode upstream of the medium is usuaHy positive. The electric field can cause the suspended particles to form a more open cake or, in the extreme, to prevent cake formation altogether by keeping aH particles away from the medium. [Pg.390]

The fundamental case for pressure filters may be made using equation 10 for dry cake production capacity Y (kg/m s) derived from Darcy s law when the filter medium resistance is neglected. Eor the same cycle time (same speed), if the pressure drop is increased by a factor of four, production capacity is doubled. In other words, filtration area can be halved for the same capacity but only if is constant. If increases with pressure drop, and depending how fast it increases, the increased pressure drop may not give much more capacity and may actually cause capacity reductions. [Pg.393]

Horizontal belt filters are well suited to either fast or slowly draining soHds, especially where washing requirements are critical. Multistage countercurrent washing can be effectively carried out due to the sharp separation of filtrates available. Horizontal belt vacuum filters are classified according to the method employed to support the filter medium. [Pg.396]

The so-called hyperbar vacuum filtration is a combination of vacuum and pressure filtration in a pull—push arrangement, whereby a vacuum pump of a fan generates vacuum downstream of the filter medium, while a compressor maintains higher-than-atmospheric pressure upstream. If, for example, the vacuum produced is 80 kPa, ie, absolute pressure of 20 kPa, and the absolute pressure before the filter is 150 kPa, the total pressure drop of 130 kPa is created across the filter medium. This is a new idea in principle but in practice requires three primary movers a Hquid pump to pump in the suspension, a vacuum pump to produce the vacuum, and a compressor to supply the compressed air. The cost of having to provide, install, and maintain one additional primary mover has deterred the development of hyperbar vacuum filtration only Andrit2 in Austria offers a system commercially. [Pg.407]

Thickening Pressure Filters. The most important disadvantage of conventional cake filtration is the declining rate due to the increased pressure drop caused by the growth of the cake on the filter medium. A high flow rate of Hquid through the medium can be maintained if Httle or no cake is allowed to form on the medium. This leads to thickening of the slurry on the upstream part of the medium filters based on this principle are sometimes called filter thickeners. [Pg.409]

Dislodging of Cake by Reverse Flow. Intermittent back-flushing of the filter medium can also be used to control cake growth, leading to filtration through thin cakes in short cycles. Conventional vacuum or pressure filters can be modified to counter the effects of the forces during the back-flush (23,24). [Pg.409]

The disk filter is similar to the dmm in operation, but filtration is conducted using a series of large diameter filter disks that carry the filter medium on both sides of the disk. They are connected to the main horizontal shaft and partly immersed in the feed slurry. The central shaft is connected by a set of valves which serve to provide vacuum and air as in dmm filters. As the disk sections submerge during rotation, vacuum is appHed to form a cake on both sides of the disk. The cycle of operation is similar to that in a dmm filter. One unit can have as many as 12 disks of up to 5-m diameter. Disk filters, both compact and cost effective, are used extensively in the iron ore industry to dewater magnetite concentrates. [Pg.414]

The cleaning action of the pulse is so effective that the dust layer may be completely removed From the surface of the fabric. Consequently, the fabric itself must sei ve as the principal filter medium for at least a substantial part of the filtration cycle. Woven fabrics are unsuitable for such service, and felts of various types must be used. The bulk of the dust is still removed in a surface layer, but the felt ensures that an adequate collection efficiency is maintained until the dust layer has formed. [Pg.1603]

Panel filters may use either viscous or dry filter media. Viscous filters are so called because the filter medium is coated with a tacky liquid of high viscosity (e.g., mineral oil and adhesives) to retain the dust. The filter pad consists of an assembly of coarse fibers (now usually metal, glass, or plastic). Because the fibers are coarse and the media are highlv porous, resistance to air flow is low and high filtration velocities can be used. [Pg.1608]

Filtration is the separation of a fluid-solids mixture involving passage of most of the fluidthrough a porous barrier which retains most of the solid particulates contained in the mixture. This subsec tion deals only with the filtration of solids from liquids gas filtration is treated in Sec. 17. Filtration is the term for the unit operation. A filter is a piece of unit-operations equipment by which filtration is performed. The filter medium or septum is the barrier that lets the liquid pass while retaining most of the solids it may be a screen, cloth, paper, or bed of solids. The hquid that passes through the filter medium is called the filtrate. [Pg.1692]

By filtration mechanism. Although the mechanism for separation and accumulation of solids is not clearly understood, hvo models are generally considered and are the basis for the apphcation of theoiy to the filh ation process. When solids are stopped at the surface of a filter medium and pile upon one another to form a cake of increasing thickness, the separation is called cake filtration. When solids are trapped within tne pores or body of the medium, it is termed depth, filter-medium, or clarifying filtration. [Pg.1692]

Scale-Up on Rate Filtration rates calculated from bench-scale data shouldbe multiplied by a factor of 0.8 for all types of commercial units which do not employ continuous washing of the filter medium and on which there is a possibility of filter-medium bhnding. For those units which employ continuous filter-medium washing, belt-type drum and horizontal units, the scale-up fac tor maybe increased to 0.9. The use of this scale-up fac tor assumes the following ... [Pg.1703]

Constant-Rate Filtration For substantially incompressible cakes, Eq. (18-51) may be integrated for a constant rate of slurry feed to the filter to give the following equations, in which filter-medium resistance is treated as the equivalent constant-pressure component to be deducted from the rising total pressure drop to... [Pg.1704]

It is advisable to start a constant-pressure filtration test, like a comparable plant operation, at a low pressure, and smoothly increase the pressure to the desired operating level. In such cases, time and filtrate-quantity data shoulci not be taken until the constant operating pressure is reahzed. The value of r calculated from the extrapolated intercept then reflec ts the resistance of both the filter medium and that part of the cake deposited during the pressure-buildup period. When only the total mass of diy cake is measured for the tot cycle time, as is usually true in vacuum leaf tests, at least three runs of different lengths should be made to permit a rehable plot of 0/V against W. If rectification of the resulting three points is dubious, additional runs should be made. [Pg.1705]

All filters require a filter medium to retain solids, whether the filter is for cake filtration or for filter-medium or depth filtration. Specification of a medium is based on retention of some minimum parficle size at good removal efficiency and on acceptable hfe of the medium in the environment of the filter. The selection of the type of filter medium is often the most important decision in success of the operation. For cake filtration, medium selection involves an optimization of the following factors ... [Pg.1706]


See other pages where Filtration filtering media is mentioned: [Pg.73]    [Pg.243]    [Pg.263]    [Pg.139]    [Pg.140]    [Pg.386]    [Pg.387]    [Pg.387]    [Pg.396]    [Pg.403]    [Pg.404]    [Pg.409]    [Pg.409]    [Pg.409]    [Pg.411]    [Pg.412]    [Pg.412]    [Pg.412]    [Pg.413]    [Pg.414]    [Pg.399]    [Pg.276]    [Pg.22]    [Pg.26]    [Pg.1600]    [Pg.1605]    [Pg.1606]    [Pg.1692]    [Pg.1692]    [Pg.1694]    [Pg.1694]    [Pg.1695]   
See also in sourсe #XX -- [ Pg.655 ]




SEARCH



Filter Filtrate

Filter media filtration-specific properties

Filter media precoat filtration

Filter medium

Filter-Medium Filtration Formulas

Filter/filtration

Filtering media

Filtration Filter medium

Filtration Filter medium

Filtration Media and Filter Aids

Filtration mixed-media filters

Filtration requirements, filter media

Filtration woven filter media

Media filtration

© 2024 chempedia.info