Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Filters chemical composition

Filter Selection. A variety of product- and process-related factors govern filter selection. Considerations include the characteristics of the fluid to be filtered, ie, its chemical composition and compatibiHty with the filtration system (inclusive of the membrane, filter hardware, piping, etc), the level of bioburden present, specifications on effluent quaHty, the volume of product to be filtered, flow rate, and temperature. [Pg.139]

The purity of oxygen from chlorate candles before and after gas filtration is indicated in Table 2. A particulate filter is always used. Filter chemicals are HopcaUte, which oxidizes CO to CO2 molecular sieves (qv), which remove chlorine compounds and basic materials, eg, soda lime, which removes CO2 and chlorine compounds. Other than H2O and N2, impurity levels of <1 ppm can be attained. Moisture can be reduced by using a desiccant (see Desiccants). Gas purity is a function of candle packaging as well as composition. A hotter burning unit, eg, one in which steel wool is the binder, generates more impurities. [Pg.485]

The vast increase in the application of membranes has expanded our knowledge of fabrication of various types of membrane, such as organic and inorganic membranes. The inorganic membrane is frequently called a ceramic membrane. To fulfil the need of the market, ceramic membranes represent a distinct class of inorganic membrane. There are a few important parameters involved in ceramic membrane materials, in terms of porous structure, chemical composition and shape of the filter in use. In this research, zirconia-coated y-alumina membranes have been developed using the sol-gel technique. [Pg.387]

The caramelization process can be conducted in open or closed vessels. The mixture obtained is cooled and filtered, and then the pH and specific gravity are adjusted by the addition of acids, alkalis, or water. The chemical composition and properties of caramel colors depend on reactants used and technical conditions such as time, temperature, moisture content, and pressure. During the caramelization... [Pg.336]

Improved characterization of the morphological/microstructural properties of porous solids, and the associated transport properties of fluids imbibed into these materials, is crucial to the development of new porous materials, such as ceramics. Of particular interest is the fabrication of so-called functionalized ceramics, which contain a pore structure tailored to a specific biomedical or industrial application (e.g., molecular filters, catalysts, gas storage cells, drug delivery devices, tissue scaffolds) [1-3]. Functionalization of ceramics can involve the use of graded or layered pore microstructure, morphology or chemical composition. [Pg.304]

The sole purpose of the filter support and any applied extracellular matrix is simply to provide a surface for cell attachment and thus to provide mechanical support to the monolayer. However, the filter and matrix also can act as serial barriers to solute movement after diffusion through the cell monolayer. The important variables are the chemical composition of the filter, porosity, pore size, and overall thickness. In some cases, pore tortuosity also can be important. It is desired that the filter, with or without an added matrix, provide a favorable surface to which the cells can attach. However, in some cases these properties can also result in an attractive surface for nonspecific adsorption of the transported solute. In these instances, the appearance of the solute in the receiver compartment of the diffusion cell will not be a true reflection of its movement across the mono-layer. Such problems must be examined on a case-by-case basis. [Pg.245]

Chemical composition was determined by elemental analysis, by means of a Varian Liberty 200 ICP spectrometer. X-ray powder diffraction (XRD) patterns were collected on a Philips PW 1820 powder diffractometer, using the Ni-filtered C Ka radiation (A, = 1.5406 A). BET surface area and pore size distribution were determined from N2 adsorption isotherms at 77 K (Thermofinnigan Sorptomatic 1990 apparatus, sample out gassing at 573 K for 24 h). Surface acidity was analysed by microcalorimetry at 353 K, using NH3 as probe molecule. Calorimetric runs were performed in a Tian-Calvet heat flow calorimeter (Setaram). Main physico-chemical properties and the total acidity of the catalysts are reported in Table 1. [Pg.358]

Except for its lower protein concentration, glomerular filtrate at the top of the nephron is chemically identical to the plasma. The chemical composition of the urine is however quantitatively very different to that of plasma, the difference is due to the actions of the tubules. Cells of the proximal convoluted tubule (PCT) are responsible for bulk transfer and reclamation of most of the filtered water, sodium, amino acids and glucose (for example) whereas the distal convoluted tubule (DCT) and the collecting duct are concerned more with fine tuning the composition to suit the needs of the body. [Pg.264]

Mittal, et al. reported the proximate chemical composition of a number of different samples collected in the model card room at North Carolina State University (31). Samples in this study included a coarse trash which was comprised of relatively large, mostly lint-free particulate matter that fell to the floor of the condenser filter chamber in a Pneumafil filter system (Model FCV8-3MTRK) (31). The second sample set was separated by the sonic sifting procedure from the condenser trash. Another set of samples was collected from an electrostatic precipitator located in the air conditioning return of the model card room. Results of ash analyses are shown in Table VII. [Pg.321]

The ECM has a very wide variety of functions it establishes mechanical connections between cells it creates structures with special mechanical properties (as in bone, cartilage, tendons, and joints) it creates filters (e. g., in the basal membrane in the renal corpuscles see p.322) it separates cells and tissues from each other (e.g., to allow the Joints to move freely) and it provides pathways to guide migratory cells (important for embryonic development). The chemical composition of the ECM is just as diverse as its functions. [Pg.346]

According to the vendor, the capital and operating costs associated with a PCC biofiltration system vary depending on site-specific factors. The capital cost of the system is directly related to the size of the reactor. The size of the reactor is dependent on the flow rate, chemical composition, and concentration. The operating costs often include electricity consumption, natural gas consumption, steam, maintenance cost, filter media replacement, water consumption, and media disposal. These operating costs are directly related to the design and size of the biofilter (D213161, pp. 1 2). [Pg.881]

Multivariate methods, on the other hand, resolve the major sources by analyzing the entire ambient data matrix. Factor analysis, for example, examines elemental and sample correlations in the ambient data matrix. This analysis yields the minimum number of factors required to reproduce the ambient data matrix, their relative chemical composition and their contribution to the mass variability. A major limitation in common and principal component factor analysis is the abstract nature of the factors and the difficulty these methods have in relating these factors to real world sources. Hopke, et al. (13.14) have improved the methods ability to associate these abstract factors with controllable sources by combining source data from the F matrix, with Malinowski s target transformation factor analysis program. (15) Hopke, et al. (13,14) as well as Klelnman, et al. (10) have used the results of factor analysis along with multiple regression to quantify the source contributions. Their approach is similar to the chemical mass balance approach except they use a least squares fit of the total mass on different filters Instead of a least squares fit of the chemicals on an individual filter. [Pg.79]

Improved control devices now frequently installed on conventional coal-utility boilers drastically affect the quantity, chemical composition, and physical characteristics of fine-particles emitted to the atmosphere from these sources. We recently sampled fly-ash aerosols upstream and downstream from a modern lime-slurry, spray-tower system installed on a 430-Mw(e) coal utility boiler. Particulate samples were collected in situ on membrane filters and in University of Washington MKIII and MKV cascade impactors. The MKV impactor, operated at reduced pressure and with a cyclone preseparator, provided 13 discrete particle-size fractions with median diameters ranging from 0,07 to 20 pm with up to 6 of the fractions in the highly respirable submicron particle range. The concentrations of up to 35 elements and estimates of the size distributions of particles in each of the fly-ash fractions were determined by instrumental neutron activation analysis and by electron microscopy, respectively. Mechanisms of fine-particle formation and chemical enrichment in the flue-gas desulfurization system are discussed. [Pg.173]

Measuring air pollution due to particles by mass can be quite misleading in terms of their ultimate impacts, for example on health. For example, the results of some laboratory studies show that ultrafine particles cause inflammatory responses while larger particles with the same chemical composition do not. Calculate how many particles with diameter 0.2 /Am would need to be collected on a hi-vol sampler (which is essentially just a filter) to have the same mass as one particle of diameter 20 gm. Assume they have the same chemical composition and hence equal densities. [Pg.39]

As discussed earlier, with respect to bacterial mutagens, one of the applications of mutagen assays is their use in focusing analytical studies directed to determining the chemical composition. This approach was also used by Hannigan and co-workers (1998), who carried out a bioassay-directed chemical analysis using the hlAlv2 human cell line of a composite sample made up of a portion of every 24-h filter sample. [Pg.497]

Chemical Composition Aerosol composition measurements have most frequently been made with little or no size resolution, most often by analysis of filter samples of the aggregate aerosol. Sample fractionation into coarse and fine fractions is achieved with a variety of dichotomous samplers. These instruments spread the collected sample over a relatively large area on a filter that can be analyzed directly or after extraction Time resolution is determined by the sample flow rate and the detection limits of the analytical techniques, but sampling times less than 1 h are rarely used even when the analytical techniques would permit them. These longer times are the result of experiment design rather than feasibility. Measurements of the distribution of chemical composition with respect to particle size have, until recently, been limited to particles larger than a few tenths of a micrometer in diameter and relatively low time resolution. One of the primary tools for composition-size distribution measurements is the cascade impactor. [Pg.204]

The specific surface areas, Sg, of the carbides were determined chromatographically from the thermal desorption of nitrogen. The phase composition of the samples was checked by X-ray and electron diffraction analyses. X-ray analysis was carried out using an URS-55a X-ray unit with CuKa (Ni-filtered) radiation. Electron diffraction analysis was performed using an EG-100A diffractometer unit. The chemical composition of the carbides samples was determined by chemical analysis. The results obtained are summarized in Table 16.1. [Pg.169]

In addition, most chemical analyses used for the mass closure and tracer approaches are made from bulk samples collected on filters. Consequently, particles with different origin but similar chemical composition can hardly be distinguished. To cope with such overlaps methods based on electron microscopy coupled with X-ray spectroscopy have been developed [10, 11]. [Pg.199]


See other pages where Filters chemical composition is mentioned: [Pg.196]    [Pg.332]    [Pg.196]    [Pg.312]    [Pg.188]    [Pg.116]    [Pg.298]    [Pg.302]    [Pg.201]    [Pg.133]    [Pg.146]    [Pg.43]    [Pg.548]    [Pg.399]    [Pg.272]    [Pg.82]    [Pg.81]    [Pg.33]    [Pg.125]    [Pg.489]    [Pg.424]    [Pg.298]    [Pg.302]    [Pg.91]    [Pg.304]    [Pg.304]    [Pg.1092]    [Pg.427]    [Pg.312]    [Pg.116]    [Pg.206]    [Pg.822]   
See also in sourсe #XX -- [ Pg.367 ]




SEARCH



Chemical filters

© 2024 chempedia.info