Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fillers natural rubber

Table 11. Effects of Nonblack Fillers in Natural Rubber ... Table 11. Effects of Nonblack Fillers in Natural Rubber ...
Another interesting innovation is that developed by the Malaysian Rubber Producers Research Association. In this case the coupling agent is first joined to a natural rubber molecule involving an ene molecular reaction. The complex group added contains a silane portion which subsequently couples to filler particles when these are mixed into the rubber. [Pg.131]

Manganese, copper, iron, cobalt and nickel ions can all initiate oxidation. Untinned copper wire can have a catastrophic effect on natural rubber compounds with which it comes into contact. Inert fillers for use in rubbers are usually tested for traces of such metal ions, particularly copper and manganese. The problem is perhaps less serious in saturated hydrocarbon polymers but still exists. [Pg.140]

Class and Chu demonstrated that if a tackifier is chosen that is largely incompatible with the elastomer, a modulus increase due to the filler effect is observed and little change in Ta results, and once again a PSA would not be obtained. This was observed for mixtures of low molecular weight polystyrene resin and natural rubber. The same polystyrene resin did tackify SBR, a more polar elastomer that is compatible with the resin. Hydrogenating the polystyrene to the cycloaliphatic polyvinylcyclohexane changed the resin to one now compatible with the less polar natural rubber and no longer compatible with SBR. These authors also provide... [Pg.477]

Block copolymer chemistry and architecture is well described in polymer textbooks and monographs [40]. The block copolymers of PSA interest consist of anionically polymerized styrene-isoprene or styrene-butadiene diblocks usually terminating with a second styrene block to form an SIS or SBS triblock, or terminating at a central nucleus to form a radial or star polymer (SI) . Representative structures are shown in Fig. 5. For most PSA formulations the softer SIS is preferred over SBS. In many respects, SIS may be treated as a thermoplastic, thermoprocessible natural rubber with a somewhat higher modulus due to filler effect of the polystyrene fraction. Two longer reviews [41,42] of styrenic block copolymer PSAs have been published. [Pg.479]

Although natural quartz, cristobalite and opal are used as fillers, only synthetic products (fumed and precipitated silicas) find use as fillers in rubber base adhesives. [Pg.633]

Fumed silicas (Si02). Fumed silicas are common fillers in polychloroprene [40], natural rubber and styrene-butadiene rubber base adhesives. Fumed silicas are widely used as filler in several polymeric systems to which it confers thixotropy, sag resistance, particle suspension, reinforcement, gloss reduction and flow enhancement. Fumed silica is obtained by gas reaction between metallic silicon and dry HCl to rend silica tetrachloride (SiCU). SiC is mixed with hydrogen and air in a burner (1800°C) where fumed silica is formed ... [Pg.633]

The BR and PIB adhesives have permanent tack but relatively low cohesive strength. Cohesive strength is provided by adding natural rubber, fillers or tacki-fiers. Furthermore, these adhesives have excellent resistance to chemicals, oils and ageing. [Pg.653]

TPEs from blends of rubber and plastics constitute an important category of TPEs. These can be prepared either by the melt mixing of plastics and rubbers in an internal mixer or by solvent casting from a suitable solvent. The commonly used plastics and rubbers include polypropylene (PP), polyethylene (PE), polystyrene (PS), nylon, ethylene propylene diene monomer rubber (EPDM), natural rubber (NR), butyl rubber, nitrile rubber, etc. TPEs from blends of rubbers and plastics have certain typical advantages over the other TPEs. In this case, the required properties can easily be achieved by the proper selection of rubbers and plastics and by the proper change in their ratios. The overall performance of the resultant TPEs can be improved by changing the phase structure and crystallinity of plastics and also by the proper incorporation of suitable fillers, crosslinkers, and interfacial agents. [Pg.634]

Carbon blacks are the most widely used fillers for elastomers, especially vulcanised natural rubber. They cause an improvement in stiffness, they increase the tensile strength, and they can also enhance the wear resistance. Other particulate fillers of an inorganic nature, such as metal oxides, carbonates, and silicates, generally do not prove to be nearly so effective as carbon black. This filler, which comes in various grades, is prepared by heat treatment of some sort of organic material, and comes in very small particle sizes, i.e. from 15 to 100 nm. These particles retain some chemical reactivity, and function in part by chemical reaction with the rubber molecules. They thus contribute to the crosslinking of the final material. [Pg.114]

Biocomposites of natural rubber with polysaccharide fillers... [Pg.122]

The results of mechanical properties (presented later in this section) showed that up to 20 phr, the biofillers showed superior strength and elongation behavior than CB, cellulose being the best. After 30 phr the mechanical properties of biocomposites deteriorated because of the poor compatibility of hydrophilic biopolymers with hydrophobic natural rubber(results not shown). While increasing quantity of CB in composites leads to constant increase in the mechanical properties. Scanning electron micrographs revealed presence of polymer-filler adhesion in case of biocomposites at 20 phr. [Pg.122]

Generally speaking, commercial rubber products are manufactured as a composite from a rubber and a nano-filler, which is in a group of fillers of nanometer size (mainly, carbon black and particulate silica). For an example, a pneumatic tire for heavy-duty usages such as aircrafts and heavyweight tracks is made from natural rubber (NR) and carbon black and/or silica. Their reinforcing ability onto rubbers makes them an indispensable component in the rubber products [1,2]. [Pg.543]

Compound Recipe of Natural Rubber (NR) Vulcanizate without Filler... [Pg.591]

FIGURE 33.8 Strain dependence of G for oil extended solution SBR (OESSBR)/BR and natural rubber (NR) filled with a variety of fillers. [Pg.943]

A typical stress-strain curve for a pure gum natural rubber vulcanizate (i.e., without carbon black or other fillers ) is shown in Fig. 83. The stress rises slowly up to an elongation of about 500 percent (length six times initial length), then rises rapidly to a value at break in the neighborhood of 3000 pounds per square inch based on the... [Pg.434]

Deformulation of vulcanised rubbers and rubber compounds at Dunlop (1988) is given in Scheme 2.3. Schnecko and Angerer [72] have reviewed the effectiveness of NMR, MS, TG and DSC for the analysis of rubber and rubber compounds containing curing agents, fillers, accelerators and other additives. PyGC has been widely used for the analysis of elastomers, e.g. in the determination of the vulcanisation mode (peroxide or sulfur) of natural rubbers. [Pg.36]

There are a number of papers in the open literature explicitly reporting on the properties of boron cluster compounds for potential neutron capture applications.1 Such applications make full use of the 10B isotope and its relatively high thermal neutron capture cross section of 3.840 X 10 28 m2 (barns). Composites of natural rubber incorporating 10B-enriched boron carbide filler have been investigated by Gwaily et al. as thermal neutron radiation shields.29 Their studies show that thermal neutron attenuation properties increased with boron carbide content to a critical concentration, after which there was no further change. [Pg.113]

CaC03, a white solid which occurs in nature as chalk, limestone and marble the ground product, often termed whiting, is used as an extending filler in rubber compounding. [Pg.15]

Silica used as a filler for rubbers is silicon dioxide, with particle sizes in the range of 10-40 nm. The silica has a chemically bound water content of 25% with an additional level of 4-6% of adsorbed water. The surface of silica is strongly polar in nature, centring around the hydroxyl groups bound to the surface of the silica particles. In a similar fashion, other chemical groups can be adsorbed onto the filler surface. This adsorption strongly influences silica s behaviour within rubber compounds. The groups found on the surface of silicas are principally siloxanes, silanol and reaction products of the latter with various hydrous oxides. It is possible to modify the surface of the silica to improve its compatibility with a variety of rubbers. [Pg.145]

Oils of the three types are offered in a range of viscosities and this will influence their processing character to some extent, although there is little evidence that it will have much influence on the ultimate compound physical properties, at least in natural rubber compounds. The small additions of oil to a compound help with filler dispersion by lubricating the polymer molecular chains and thus increasing their mobility. There will also be some wetting out of the filler particles which enables them to achieve earlier compatibility with the rubber and improve their distribution and dispersion speed. [Pg.153]

Lignosulfonates have recently been tried as a filler for rubber but are slightly less efficient than carbon black, the cheap conventional filler with which it must compete. However, it is conceivable that lignin could increase the stability of rubber to ozone, the natural reagent which causes vulcanized rubber to "perish. ... [Pg.149]


See other pages where Fillers natural rubber is mentioned: [Pg.347]    [Pg.492]    [Pg.127]    [Pg.284]    [Pg.288]    [Pg.289]    [Pg.293]    [Pg.293]    [Pg.473]    [Pg.634]    [Pg.653]    [Pg.28]    [Pg.121]    [Pg.121]    [Pg.127]    [Pg.26]    [Pg.1023]    [Pg.18]    [Pg.17]    [Pg.142]    [Pg.183]    [Pg.195]    [Pg.812]    [Pg.173]    [Pg.546]    [Pg.111]    [Pg.35]   
See also in sourсe #XX -- [ Pg.326 ]




SEARCH



C - Natural Rubber - Mineral Filler Loaded

D - Natural Rubber - Mineral Filler (Heavy Loaded)

Filler reinforcement in natural rubber

Filler reinforcement in natural rubber model

Fillers, natural

Natural rubber with hybrid filler

Rubber fillers

Theory and Mechanisms of Filler Reinforcement in Natural Rubber

© 2024 chempedia.info