Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Filler formation

Surface area, pore volume, and pore size distribution are very significant factors controlling the surface reactivity of bioceramic materials. In situ filler formation by sol-gel methods (see also Chapter 24) has been used to prepare bioactive glasses with... [Pg.453]

Studies on randomness of filler distribution in polymethylacrylate nanocomposite are interesting. In this experiment, siUca particles were formed both before and after matrix polymerization. The results indicated that the concentration of silica was a controlling factor in the stress-strain relationship rather than the uniformity of particle distribution. Also, there was no anisotropy of mechanical properties regardless of the sequence of filler formation. This outcome cannot be expected to be duplicated in all other systems. For example, when nickel coated fibers were used in an EMI shielding application." When compounded with polycarbonate resin, fibers had a much worse performance than when a diy blend was prepared first and then incorporated into the polymer (Figure 7.1). In this case, pre-blending protected the fiber from breakage. [Pg.223]

For many electronic and electrical appHcations, electrically conductive resias are required. Most polymeric resias exhibit high levels of electrical resistivity. Conductivity can be improved, however, by the judicious use of fillers eg, in epoxy, silver (in either flake or powdered form) is used as a filler. Sometimes other fillers such as copper are also used, but result in reduced efficiency. The popularity of silver is due to the absence of the oxide layer formation, which imparts electrical insulating characteristics. Consequently, metallic fibers such as aluminum are rarely considered for this appHcation. [Pg.531]

Fillers. Materials used as fillers (qv) in mbber can also be classified as acidic, basic, or neutral. Furnace blacks, ie, HAF, FEF, or SRF, are somewhat basic. As such, they can have an activating effect on sulfur cure rates. Furthermore, carbon blacks have been found to promote formation of mono/disulfide cross-links thereby helping minimize reversion and enhance aging properties. [Pg.242]

Welding (qv) of titanium requires a protected atmosphere of iaert gas. Furthermore, parts and filler wire are cleaned with acetone (trichloroethylene is not recommended). The pieces to be welded are clamped, not tacked, unless tacks are shielded with iaert gas. A test sample should be welded. Coated electrodes are excluded and higher purity metal (lower oxygen content) is preferred as filler. Titanium caimot be fusion-welded to other metals because of formation of brittle intermetallic phases ia the weld 2oae. [Pg.106]

The formulation of calcium chelate materials is based upon the formation of a low-solubiUty chelate between calcium hydroxide and a sahcylate. Dycal utilizes the reaction product of a polyhydric compound and sahcyhc acid. Other sahcyhc acid esters can be similarly used. Vehicles used to carry the calcium hydroxide, extenders, and fillers may include mineral oil, A/-ethyl- -toluenesulfonamide [80-39-7] and polymeric fluids. The filler additions may include titanium dioxide [13463-67-7] zinc oxide, sihca [7631-86-9], calcium sulfate, and barium sulfate [7727-43-7]. Zinc oxide and barium sulfate are useflil as x-ray opacifying agents to ensure a density greater than that of normal tooth stmcture. Resins, rosin, limed rosins, and modified rosins may serve as modifiers of the physical characteristics in both the unset and set states. [Pg.475]

In the pulp and paper industry, anionic and cationic acrylamide polymers are used as chemical additives or processing aids. The positive effect is achieved due to a fuller retention of the filler (basically kaoline) in the paper pulp, so that the structure of the paper sheet surface layer improves. Copolymers of acrylamide with vi-nylamine not only attach better qualities to the surface layer of.paper, they also add to the tensile properties of paper in the wet state. Paper reinforcement with anionic polymers is due to the formation of complexes between the polymer additive and ions of Cr and Cu incorporated in the paper pulp. The direct effect of acrylamide polymers on strength increases and improved surface properties of paper sheets is accompanied by a fuller extraction of metallic ions (iron and cobalt, in addition to those mentioned above), which improves effluent water quality. [Pg.71]

Zinc salt of maleated EPDM rubber in the presence of stearic acid and zinc stearate behaves as a thermoplastic elastomer, which can be reinforced by the incorporation of precipitated silica filler. It is believed that besides the dispersive type of forces operative in the interaction between the backbone chains and the filler particles, the ionic domains in the polymer interact strongly with the polar sites on the filler surface through formation of hydrogen bonded structures. [Pg.450]

An important consideration is the effect of filler and its degree of interaction with the polymer matrix. Under strain, a weak bond at the binder-filler interface often leads to dewetting of the binder from the solid particles to formation of voids and deterioration of mechanical properties. The primary objective is, therefore, to enhance the particle-matrix interaction or increase debond fracture energy. A most desirable property is a narrow gap between the maximum (e ) and ultimate elongation ch) on the stress-strain curve. The ratio, e , eh, may be considered as the interface efficiency, a ratio of unity implying perfect efficiency at the interfacial Junction. [Pg.715]

There is greater similarity in the behavior of stretched melts and solid samples prepared by, e.g. pressure molding, probably, for the reason of parallelism in structure formation and destruction caused by deformation in melts and the amorphous regions of solid matrices. It is also possible to use identical equations for longitudinal viscosity and strength which present them as functions of the filler concentration [34]. [Pg.5]


See other pages where Filler formation is mentioned: [Pg.348]    [Pg.348]    [Pg.344]    [Pg.347]    [Pg.39]    [Pg.328]    [Pg.331]    [Pg.4]    [Pg.8]    [Pg.15]    [Pg.16]    [Pg.19]    [Pg.321]    [Pg.322]    [Pg.325]    [Pg.14]    [Pg.50]    [Pg.55]    [Pg.241]    [Pg.488]    [Pg.238]    [Pg.228]    [Pg.265]    [Pg.1875]    [Pg.155]    [Pg.326]    [Pg.354]    [Pg.459]    [Pg.486]    [Pg.410]    [Pg.419]    [Pg.424]    [Pg.630]    [Pg.634]    [Pg.636]    [Pg.117]    [Pg.30]    [Pg.442]    [Pg.598]    [Pg.11]    [Pg.13]   
See also in sourсe #XX -- [ Pg.218 , Pg.239 ]




SEARCH



Fillers film formation

Formation of Filler Agglomerates in a Single Screw Extruder

Retardant fillers) smoke formation

© 2024 chempedia.info