Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Field desorption mass spectrometry ionization technique

Field-desorption mass spectrometry (FDMS), where no evaporation prior to ionization is required, has been successfully used in the analysis of in volatile phosphonium salts113, although a direct thermal process gave similar spectra114. In the case where the FD spectra are complex, a chemical ionization technique may give wider applicability115. The cation is the base peak for monophosphonium salts when the [2M + anion]+ cationic species is the one for bisphosphonium compounds. [Pg.60]

Conventional electron impact or chemical ionization mass spectrometry requires that volatilization precede ionization and this is clearly a limiting factor in the analysis of many biochemically significant compounds. A newer ionization technique, field desorption (FD) (1, 2 ) removes this requirement and makes it possible to obtain mass spectrometric information on thermally unstable or non-volatile organic compounds such as glycoconjugates and salts. This development is particularly significant for those concerned with the analysis of glycolipids and we have therefore explored the suitability of field desorption mass spectrometry (FDMS) for this class of compounds. We have evaluated experimental procedures in order to enhance the efficiency of the ionization process and to maximize the information content of spectra obtained by this technique. [Pg.35]

FAB is most often compared to the soft ionization method known as field desorption (FD) mass spectrometry, a technique in which the sample, deposited on an emitter wire coated with microcrystalline carbon needles, is desorbed under the influence of a high electric field gradient. As usual, bioorganic systems are best represented by both techniques (21, 33). Though FAB is the easier of the two, they are complementary, FAB being particularly suited for the case of extreme thermal lability and FD for the case of chemical lability or matrix interference. Cerny et al. (33) compare the two techniques for the study of coordination complexes and conclude FD is better for molecular-ion determination, while FAB provides better fragmentation information, which is useful in elucidating structures. [Pg.6]

At that time the mass spectrometric ionization techniques of electron ionization (El) [1] and chemical ionization (Cl) [2] required the analyte molecules to be present in the gas phase and were thus suitable only for volatile compounds or for samples subjected to derivatization to make them volatile. Moreover, the field desorption (FD) ionization method [3], which allows the ionization of non-volatile molecules with masses up to 5000 Da, was a delicate technique that required an experienced operator [4], This limited considerably the field of application of mass spectrometry of large non-volatile biological molecules that are often thermolabile. [Pg.305]

Early in the history of mass spectrometry (MS), large biomolecules were not analyzed because efficient methods to transport these molecules into the gas phase were unknown. Degradation typically occurred during vaporization of these nonvolatile molecules so that electron ionization of the intact molecular ion was not possible. Ionization by fast atom bombardment (FAB), field desorption (FD), secondary ionization mass spectrometry (SIMS), and plasma desorption (PD)" from the radioactive decay of Cf finally made the ionization and analysis of peptides possible. These latter techniques, although still used today, are not as popular as electrospray... [Pg.72]

In the last decade there has been a fast progress in the field of mass spectrometry employing soft ionization techniques such as electrospray ionization mass spectrometry (ESI-MS), Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and matrix-assisted laser desorption ionization mass spectrometry (MALDI)-MS. These tools provide molecular level information on humic substances. [Pg.2114]

One of the major problems in analytical chemistry is the detection and identification of non-volatile compounds at low concentration levels. Mass spectrometry is widely used in the analysis of such compounds, providing an exact mass, and hence species identification. However, successful and unequivocal identification, and quantitative detection, relies on volatilization of the compound into the gas phase prior to injection into the analyser. This constimtes a major problem for thermally labile samples, as they rapidly decompose upon heating. In order to circumvent this difficulty, a wide range of techniques have been developed and applied to the analysis of nonvolatile species, including fast atom bombardment (FAB), field desorption (FD), laser desorption (LD), plasma desorption mass spectrometry (PDMS) and secondary-ion mass spectrometry (SIMS). Separating the steps of desorption and ionization can provide an important advantage, as it allows both processes to be... [Pg.3]

Ion-mobility mass spectrometry (IM-MS) has emerged as an important analytical method in the last decade [74]. In IM-MS, ions are generated by pyrolysis, electrospray, laser desorption, or other ionization techniques prior to their entry into a gas-filled mobility drift cell. In this cell, ions drift at a velocity obtained from an electric field based on their shapes or dipoles in the case of differential mobility spectrometry (DMS). The greater the cross section of an analyte is (i.e., the larger the ion... [Pg.112]

The main difference between field ionization (FI) and field desorption ionization (FD) lies in the manner in which the sample is examined. For FI, the substance under investigation is heated in a vacuum so as to volatilize it onto an ionization surface. In FD, the substance to be examined is placed directly onto the surface before ionization is implemented. FI is quite satisfactory for volatile, thermally stable compounds, but FD is needed for nonvolatile and/or thermally labile substances. Therefore, most FI sources are arranged to function also as FD sources, and the technique is known as FI/FD mass spectrometry. [Pg.23]

Mass spectrometry (MS) in its various forms, and with various procedures for vaporization and ionization, contributes to the identification and characterization of complex species by their isotopomer pattern of the intact ions (usually cation) and by their fragmentation pattern. Upon ionization by the rough electron impact (El) the molecular peak often does not appear, in contrast to the more gentle field desorption (FD) or fast-atom bombardment (FAB) techniques. An even more gentle way is provided by the electrospray (ES) method, which allows all ionic species (optionally cationic or anionic) present in solution to be detected. Descriptions of ESMS and its application to selected problems are published 45-47 also a representative application of this method in a study of phosphine-mercury complexes in solution is reported.48... [Pg.1256]

Over the years, a lot of desorption ionization techniques have been introduced to MS, such as plasma desorption, field desorption, laser desorption, secondary ion mass spectrometry, fast atom bombardment, matrix assisted laser desorption and desorption electrospray ionization. Most of them are actually no longer used. In the following paragraphs, both matrix assisted laser desorption (MALDI) and desorption electrospray ionization (DESI) will be discussed. [Pg.51]

Electrospray (ESI) is an atmospheric pressure ionization source in which the sample is ionized at an ambient pressure and then transferred into the MS. It was first developed by John Fenn in the late 1980s [1] and rapidly became one of the most widely used ionization techniques in mass spectrometry due to its high sensitivity and versatility. It is a soft ionization technique for analytes present in solution therefore, it can easily be coupled with separation methods such as LC and capillary electrophoresis (CE). The development of ESI has a wide field of applications, from small polar molecules to high molecular weight compounds such as protein and nucleotides. In 2002, the Nobel Prize was awarded to John Fenn following his studies on electrospray, for the development of soft desorption ionization methods for mass spectrometric analyses of biological macromolecules. ... [Pg.234]

Earlier DI techniques include fast atom bombardment (FAB), secondary ionization mass spectrometry (SIMS), plasma desorption, and field desorption. Since their applications are primarily qualitative, they will not be discussed here. [Pg.342]


See other pages where Field desorption mass spectrometry ionization technique is mentioned: [Pg.134]    [Pg.76]    [Pg.95]    [Pg.88]    [Pg.113]    [Pg.214]    [Pg.99]    [Pg.74]    [Pg.85]    [Pg.673]    [Pg.319]    [Pg.300]    [Pg.115]    [Pg.381]    [Pg.24]    [Pg.371]    [Pg.66]    [Pg.402]    [Pg.50]    [Pg.381]    [Pg.461]    [Pg.234]    [Pg.2]    [Pg.13]    [Pg.152]    [Pg.646]    [Pg.585]    [Pg.168]    [Pg.168]    [Pg.959]    [Pg.1324]    [Pg.360]    [Pg.540]    [Pg.545]    [Pg.12]    [Pg.127]    [Pg.19]   
See also in sourсe #XX -- [ Pg.545 , Pg.546 ]




SEARCH



Desorption ionization

Desorption ionization techniques

Desorption mass spectrometry

Desorption techniques

Desorption techniques, mass spectrometry

Field desorption

Field desorption ionization

Field desorption mass spectrometry

Field desorption technique

Field ionization

Ionization techniques

Mass spectrometry ionization

Mass spectrometry ionization techniques

Mass spectrometry ionized

Mass spectrometry technique

© 2024 chempedia.info