Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ferrocene applications

A. Togni and T. Hayashi, eds (1995) Ferrocenes. Homogeneous Catalysis, Organic Synthesis, Materials Science, Wiley-VCH, Weinheim - Excellent survey of ferrocene applications. [Pg.738]

The preparation and structure determination of ferrocene marked the beginning of metallocene chemistry Metallocenes are organometallic compounds that bear cyclo pentadiemde ligands A large number are known even some m which uranium is the metal Metallocenes are not only stucturally interesting but many of them have useful applications as catalysts for industrial processes Zirconium based metallocenes for example are the most widely used catalysts for Ziegler-Natta polymerization of alkenes We 11 have more to say about them m Section 14 15... [Pg.610]

Although not so generally applicable for the preparation of dicyclopentadienyl metal compounds as the sodium cyclopenta-dienide method, the amine procedure represents the simplest preparation of ferrocene. The amine procedure can also be employed for dicyclopentadienylnickel (about 80% yield), using nickel bromide obtained by the action of bromine on nickel metal powder and 1,2-dimethoxyethane as the solvent. The method of preparation given here is a modified version of that originally described. ... [Pg.35]

Other interesting synthetic applications of the ketone-derived enamine alkylation are found in the monomethylation of steroid enamines (249), extension of the benzylation reaction (250) to a ferrocene derivative (251), the use of a-bromoesters (252) and ketones (252) or their vinylogues (25J), in the syntheses of alantolactone (254-256), isoalantolactone (257), and with a bridged bis-enamine (258). The use of bifunctional alkylating agents is also seen in the introduction of an acetylenic substituent in the synthesis of the characteristic fragrant constituent of jasmine (259), the synthesis of macrocyclic ketolactones (260), the use of butyrolactone (261), and the intermolecular or intramolecular double alkylations of enamines with dihalides (262). [Pg.348]

The reaction with disubstituted formamides and phosphorus oxychloride, called the Vilsmeier or the Vilsmeier-Haack reaction,is the most common method for the formylation of aromatic rings. However, it is applicable only to active substrates, such as amines and phenols. An intramolecular version is also known.Aromatic hydrocarbons and heterocycles can also be formylated, but only if they are much more active than benzene (e.g., azulenes, ferrocenes). Though A-phenyl-A-methyl-formamide is a common reagent, other arylalkyl amides and dialkyl amides are also used. Phosgene (COCI2) has been used in place of POCI3. The reaction has also been carried out with other amides to give ketones (actually an example of 11-14),... [Pg.715]

Abstract The unique and readily tunable electronic and spatial characteristics of ferrocenes have been widely exploited in the field of asymmetric catalysis. The ferrocene moiety is not just an innocent steric element to create a three-dimensional chiral catalyst enviromnent. Instead, the Fe center can influence the catalytic process by electronic interaction with the catalytic site, if the latter is directly coimected to the sandwich core. Of increasing importance are also half sandwich complexes in which Fe is acting as a mild Lewis acid. Like ferrocene, half sandwich complexes are often relatively robust and readily accessible. This chapter highlights recent applications of ferrocene and half sandwich complexes in which the Fe center is essential for catalytic applications. [Pg.139]

Ferrocen-l,l -diylbismetallacycles are conceptually attractive for the development of bimetal-catalyzed processes for one particular reason the distance between the reactive centers in a coordinated electrophile and a coordinated nucleophile is self-adjustable for specific tasks, because the activation energy for Cp ligand rotation is very low. In 2008, Peters and Jautze reported the application of the bis-palladacycle complex 56a to the enantioselective conjugate addition of a-cyanoacetates to enones (Fig. 31) [74—76] based on the idea that a soft bimetallic complex capable of simultaneously activating both Michael donor and acceptor would not only lead to superior catalytic activity, but also to an enhanced level of stereocontrol due to a highly organized transition state [77]. An a-cyanoacetate should be activated by enolization promoted by coordination of the nitrile moiety to one Pd(II)-center, while the enone should be activated as an electrophile by coordination of the olefinic double bond to the carbophilic Lewis acid [78],... [Pg.159]

Gomez Arrayas R, Adrio J, Carretero JC (2006) Recent applications of chiral ferrocene ligands in asymmetric catalysis. Angew Chem Int Ed 45 7674—7715 Dai LX, Hou XL (2010) Chiral ferrocenes in asymmetric catalysis. Wiley-VCH, Weinheim Rigaut S, Delville MH, Losada J, Astrac D (2002) Water-soluble mono- and star-shaped hexanuclear functional organoiron catalysts for nitrate and nitrite reduction in water syntheses and electroanalytical study. Inorg Chim Acta 334 225-242... [Pg.172]

Providing an ion exchanger with a sufficient number of redox groups so that conduction can occur by a relay-type redox-change mechanism. Examples are hydroquinone-derived redox polymers and polyvinyl polymers with a tetrathia-fulvalene, ferrocene, or carbazole group, which have been found useful for research and analytical applications. [Pg.457]

MEMED has also been used to investigate the nature of coupled ion-transfer processes involved in spontaneous electron transfer at ITIES [80]. In this application, a key strength of MEMED is that all of the reactants and products involved in the reaction can be measured, as shown in Figs. 19 and 20. The redox reaction studied involved the oxidation of either ferrocene (Fc) or decamethylferrocene (DMFc) in a DCE phase (denoted by Fcdce) by either IrCle or Fe(CN)g in the aqueous phase (denoted by Ox ) ... [Pg.352]

We can see that ferrocene is ideally suited to this application from model compounds. Using Cr(CNBun)5 as our model for the polymer-based Cr complex (21), we can estimate that the eq for reaction between ferricenium and Cr(CN [P])6, leading to removal of one electron, is approximately 10. It is also thermodynamically favorable [Ken = 1012] for a second electron to be removed to give the bound Cr(II) species. [Pg.251]

The electroactive units in the dendrimers that we are going to discuss are the metal-based moieties. An important requirement for any kind of application is the chemical redox reversibility of such moieties. The most common metal complexes able to exhibit a chemically reversible redox behavior are ferrocene and its derivatives and the iron, ruthenium and osmium complexes of polypyridine ligands. Therefore it is not surprising that most of the investigated dendrimers contain such metal-based moieties. In the electrochemical window accessible in the usual solvents (around +2/-2V) ferrocene-type complexes undergo only one redox process, whereas iron, ruthenium and osmium polypyridine complexes undergo a metal-based oxidation process and at least three ligand-based reduction processes. [Pg.206]

With regard to biosensor applications, a wide variety of electrochemically active species (ferrocene, ruthenium complexes, or carbon and metal (Pt, Pd, Au...) [185,186] were also introduced into the sol-gel matrices or adsorbed to improve the electron transfer from the biomolecules to the conductive support [187,188]. For instance, glucose oxidase has been trapped in organically modified sol-gel chitosan composite with adsorbed ferrocene to construct a low-cost biosensor exhibiting high sensitivity and good stability [189]. [Pg.466]

P.C. Pandey, S. Upadhayay, H.C., Pathak, and C.M.D. Pandey, Studies on ferrocene immobilized sol-gel glasses and its application in the construction of a novel solid-state ion sensor. Electroanalysis 11, 950-956 (1999). [Pg.547]

V.B. Kandimalla, V.S. Tripathi, and H.X. Ju, A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials 27,1167-1174 (2006). [Pg.549]

A series of non-f, -symmetrical ferrocene-based 1,5-diphosphane ligands (TaniaPhos) has been developed by Knochel.88,88a,88b The ligands have been effectively used in Rh- or Ru-catalyzed asymmetric hydrogenations. The ligand 39, which has an MeO group at the chiral carbon center, has shown excellent applications in the hydrogenation of several olefin and ketone substrates.89 Weissensteiner and Spindler have reported a series of structurally different... [Pg.11]

Major Applications of Ferrocene Diphosphine-Based Catalysts 1847... [Pg.847]

Kang et al.6 reported a practical synthesis of an air-stable ferrocenyl bis-(phosphine) (p5, p5 )-l,l,-bis-(diphenylphosphino)-2,2 -di-3-pentyl ferrocene ([5, 5]-FerroPhos, 10a) and its application in the rhodium(I)-catalyzed enan-tioselective hydrogenation of dehydroamino acid derivatives. [Pg.341]


See other pages where Ferrocene applications is mentioned: [Pg.136]    [Pg.138]    [Pg.136]    [Pg.138]    [Pg.257]    [Pg.49]    [Pg.132]    [Pg.313]    [Pg.511]    [Pg.332]    [Pg.65]    [Pg.145]    [Pg.158]    [Pg.1219]    [Pg.2]    [Pg.3]    [Pg.30]    [Pg.60]    [Pg.160]    [Pg.211]    [Pg.50]    [Pg.322]    [Pg.321]    [Pg.380]    [Pg.11]    [Pg.17]    [Pg.833]    [Pg.848]    [Pg.213]   
See also in sourсe #XX -- [ Pg.188 , Pg.189 ]




SEARCH



Applications of Chiral Ferrocene Derivatives

Ferrocene major applications

Ferrocene-functionalized polymer applications)

© 2024 chempedia.info