Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation of enamine

The illumination of enamines as general activa ting derivatives of ketones in alkylation reactions also threw light on their special usefulness for controlling alkylations (3), particularly in the formation of monosubstituted cyclohexanones. Thus 2-methylcyclohexanone could be obtained in 80% yield from the pyrrolidine enamine of cyclohexanone, and further alkylation, which required more drastic conditions, gave only 2,6-dimethylcyclo-hexanone (1,237). [Pg.346]

In the alkylation of enolate anions, a mixture of mono- and polyalky lation produets is usually obtained, and when enolization of a di-a-methylene ketone is possible toward both sides, a mixture of di-a- and a,a -dialkylation products ean be expeeted. Thus the enamine alkylation sequenee beeomes partieularly attractive when eontrolled monoalkylation is imperative beeause of difficulties in separation of a mixture of alkylation produets. One of its first synthetie applications was in the reaetions of /8-tetralones with alkyl halides. Yields in exeess of 80% were usually found 238-243) in these reaetions, which make valuable intermediates for steroid and diterpene syntheses more aecessible. [Pg.347]

Similarly, the method has been applied to the synthesis of five- (244) and seven- (245,246) membered-ring ketone analogs of (0-tetralone. [Pg.347]

Extensions of the enamine alkylation to a-tetralones have also been used (245-248), but product yields were lower, presumably due to steric crowding in a transition state where generation of an imonium salt gives rise to a repulsion between a methylene group on nitrogen and a peri aromatic proton. [Pg.348]

Other interesting synthetic applications of the ketone-derived enamine alkylation are found in the monomethylation of steroid enamines (249), extension of the benzylation reaction (250) to a ferrocene derivative (251), the use of a-bromoesters (252) and ketones (252) or their vinylogues (25J), in the syntheses of alantolactone (254-256), isoalantolactone (257), and with a bridged bis-enamine (258). The use of bifunctional alkylating agents is also seen in the introduction of an acetylenic substituent in the synthesis of the characteristic fragrant constituent of jasmine (259), the synthesis of macrocyclic ketolactones (260), the use of butyrolactone (261), and the intermolecular or intramolecular double alkylations of enamines with dihalides (262). [Pg.348]


Another similar example concerns the alkylation of enamines. This reaction works well with reactive a-halocarbonyl compounds (frames 175ff) but simple alkyl hahdes often react on nitrogen ... [Pg.106]

Alkylations of enamines of a,)9-unsaturated ketones with alkyl halides often give very poor yields of C-alkylated products because of competing. -alkylation.In the type of transformation illustrated here, direct alkylations of enamines are completely unsuccessful, even in cases where hindered enamines are used. On the other hand, the metaUoenamine method can be applied generally with good success in the problem of monoalkylation of ,)3-unsaturated ketones. ... [Pg.71]

Alkylation of enamines can take place on carbon or on nitrogen (see Section I). The theoretical considerations and reaction conditions which determine whether C or N alkylation takes place have already been studied extensively 26-32). These studies have shown that the facility with which alkylation takes place depends on the basicity of theenamine, on the ease of formation of a trigonal atom in the transition state, and on the nature of the enamine, the alkylating agent, and the solvent. [Pg.119]

A fundamental problem in the alkylation of enamines, which is inherent in the bidentate system, is the competition between the desired carbon alkylation and attack at the nitrogen. With unactivated alkyl halides (3,267), this becomes especially serious with the enamines derived fromcycloheptan-one, cyclooctanone, cyclononanone, and enamines derived from aldehydes. Increasing amounts of carbon alkylation are found with the more reactive allyl and benzyl halides (268-273). However, with allyl halides one also observes increasing amounts of dialkylation of enamines. [Pg.352]

The a alkylation of enamines has also been extended to photochemical and thermal reactions of carbon tetrachloride with enamines (292,293). [Pg.357]

Alkylation of enamines with epoxides or acetoxybromoalkanes provided intermediates for cyclic enol ethers (668) and branched chain sugars were obtained by enamine alkylation (669). Sodium enolates of vinylogous amides underwent carbon and nitrogen methylation (570), while vicinal endiamines formed bis-quaternary amonium salts (647). Reactions of enamines with a cyclopropenyl cation gave alkylated imonium products (57/), and 2-benzylidene-3-methylbenzothiazoline was shown to undergo enamine alkylation and acylation (572). A cyclic enamine was alkylated with methylbromoacetate and the product reduced with sodium borohydride to the key intermediate in a synthesis of the quebrachamine skeleton (57i). [Pg.357]

The problem of nitrogen alkylation of enamines, which one encounters with alkyl halides, is of no consequence in alkylations with positively activated olefins, since the generation of amonium salts can be expected to be reversible in these cases. Thus such enamine alkylations are obviously attractive to the synthetic chemist. Their particular importance, however, arises from avoidance of the serious obstacles often found with parallel enolate anion reactions. [Pg.359]

The alkylation of enamines with 2- and 4-vinyl pyridines has also been described (J/9). [Pg.365]

The alkylation of enamines with nitroolefins, which gives intermediates for reductive cyclization (6S2), also provided an example of a stable cycliza-tion product derived from attack of the intermediate imonium function by the nitro anion (683). A previously claimed tetrasubstituted enamine, which was obtained from addition of a vinylsulfone to morpholinocyclohexene (314), was shown to be the corresponding cyclobutane (684). Perfluoro-olefins also gave alkylation products with enamines (685). Reactions of enamines with diazodicarboxylate (683,686) have been used diagnostically for 6-substituted cyclohexenamines. In a reaction of 2-penten-4-one with a substituted vinylogous amide, stereochemical direction was seen to depend on solvent polarity (687). [Pg.375]

The familiar alkylation of -ketoesters followed by decarboxylation is still a useful route to a-alkyl ketones, although the alkylation of enamines is frequently the preferred route. Given below are two examples of alkylation of 2-carbethoxycycloalkanones (prepared in Chapter 10, Section I). In the first case, sodium ethoxide is the base employed to generate the enolate ion of 2-carbethoxycyclohexanone. In the second case, the less acidic 2-carbethoxycyclooctanone requires sodium hydride for the generation of the enolate ion. [Pg.99]

Primary and secondary halides do not perform well, mostly because N-alkylation becomes important, particularly with enamines derived from aldehydes. An alternative method, which gives good yields of alkylation with primary and secondary halides, is alkylation of enamine salts, which are prepared by treating an imine with ethylmagnesium bromide in THF ... [Pg.788]

Alkylation of enamines Addition of amines to triple-bond compounds Addition of amines to aldehydes or ketones Reaction between Grignard reagents and formamides Reaction of phosphonates with aldehydes or ketones... [Pg.1667]

Alkylation of enamines requires relatively reactive alkylating agents for good results. Methyl iodide, allyl and benzyl halides, a-halo esters, a-halo ethers, and a-halo ketones are the most successful alkylating agents. The use of enamines for selective alkylation has largely been supplanted by the methods for kinetic enolate formation described in Section 1.2. [Pg.47]

Several other alkylation reactions of benzyl chloromethyl ether have been reported using phosphorus compounds as nucleophiles. Hydrolysis and alcoholysis reactions of the reagent have been investigated along with the addition of the chloroether to propylene in the presence of zinc chloride. The alkylation of enamines with benzyl bromomethyl ether has been reported. ... [Pg.10]

Alkylation of enamines may lead to the formation of N-alkylated product, which on heating is converted to C-alkyl compound (This rearrangement is common with allylic halide, alkyl halide or a-haloacetic ester. [Pg.220]

The alkylation of enamines (126a) (Y = OCH3, OC2H5, O-t-QHg) derived from (S)-proline esters was first described by Yamada et al.148). [Pg.203]

This is a general method of preparing enamines from a secondary aliphatic amine and cyclohexanone or cyclopentanone. Acylation of such enamines is the first step in a general procedure for increasing the chain length of a carboxylic acid by 5 or 6 carbon atoms and of a dicarboxylic acid by 10 or 12 carbon atoms.6 Alkylation of enamines of cyclohexanones by alkyl halides 7 or electrophilic olefins,8 followed by hydrolysis, is a good route to a-monoalkyl cyclohexanones. [Pg.34]

Opitz.G. (1961) Enamines. Vll. Course of the allyl- and propargyl-aUenyl rearrangements in the alkylation of enamines. Justus Liebigs Ann. Chem., 122—132. [Pg.195]

Hydrazo Compounds (see Hydrazines) 2-19 (Fries) Alkylation of enamines with epox-... [Pg.1288]

Furans can be prepared by acid catalyzed cyclization of masked 1,4-diketones. /3-Chloroallyl ketones which are obtained by alkylation of enamines or enolate ions behave as masked 1,4-diketones and afford furans on treatment with acid (67JA4557). 2,4-Dialkyl-furans (40) have been prepared by cyclization of the 3-chloroallyl ketone (39), which may be obtained by acylation of allyl chlorides (73KGS1434). [Pg.661]


See other pages where Alkylation of enamine is mentioned: [Pg.102]    [Pg.218]    [Pg.313]    [Pg.346]    [Pg.353]    [Pg.558]    [Pg.1674]    [Pg.1678]    [Pg.48]    [Pg.302]    [Pg.477]    [Pg.1284]    [Pg.1291]    [Pg.764]   
See also in sourсe #XX -- [ Pg.788 ]

See also in sourсe #XX -- [ Pg.33 ]

See also in sourсe #XX -- [ Pg.601 , Pg.602 ]

See also in sourсe #XX -- [ Pg.186 ]

See also in sourсe #XX -- [ Pg.6 , Pg.186 ]

See also in sourсe #XX -- [ Pg.23 ]

See also in sourсe #XX -- [ Pg.33 ]

See also in sourсe #XX -- [ Pg.27 , Pg.28 ]

See also in sourсe #XX -- [ Pg.31 ]

See also in sourсe #XX -- [ Pg.799 ]

See also in sourсe #XX -- [ Pg.24 , Pg.271 ]




SEARCH



Alkylation enamines

Alkylation of Carbon via Enolates and Enamines

Alkylation of Nucleophilic Carbon Enolates and Enamines

Formation and Alkylation of Enamines

Of enamines

© 2024 chempedia.info