Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ferric catalyst

In the redox type telomerisation, few surveys were developed. Most of them involve CC13R type but also C4F9I producing monoadduct mainly, in the presence of ferric catalysts. [Pg.188]

The lower limit on the rate of the 0-0 bond heterolysis in the putative ferric-hydroperoxo intermediate from the rate of H2O2 reduction by the ferric catalyst (at potentials >400 mV at pH 7). [Pg.27]

The problem with the fiowsheet shown in Fig. 10.5 is that the ferric chloride catalyst is carried from the reactor with the product. This is separated by washing. If a reactor design can be found that prevents the ferric chloride leaving the reactor, the effluent problems created by the washing and neutralization are avoided. Because the ferric chloride is nonvolatile, one way to do this would be to allow the heat of reaction to raise the reaction mixture to the boiling point and remove the product as a vapor, leaving the ferric chloride in the reactor. Unfortunately, if the reaction mixture is allowed to boil, there are two problems ... [Pg.285]

Other catalysts which may be used in the Friedel - Crafts alkylation reaction include ferric chloride, antimony pentachloride, zirconium tetrachloride, boron trifluoride, zinc chloride and hydrogen fluoride but these are generally not so effective in academic laboratories. The alkylating agents include alkyl halides, alcohols and olefines. [Pg.509]

The halogen carriers or aromatic halogenation catalysts are usually all electrophilic reagents (ferric and aluminium haUdes, etc.) and their function appears to be to increase the electrophilic activity of the halogen. Thus the mechanism for the bromination of benzene in the presence of iron can be repre-sfflited by the following scheme ... [Pg.533]

A little iron powder or ferric benzoate can be used as a catalyst. [Pg.694]

The catalyst is finely-divided iron and is produced by adding a little crystallised ferric nitrate and a slight excess of sodium to liquid ammonia the reaction is probably ... [Pg.896]

Because of isomerization, alkylation of benzene with tertiary alkyl haUdes can also yield secondary alkylbenzenes rather than only tertiary alkylbenzenes (20). For example, the / fAhexylbenzene, which is first formed by the reaction of benzene with 2-chloro-2,3-dimethylbutane and AlCl isomerizes largely to 2,2-dimethyl-3-phenylbutane by a 1,2-CH2 shift. With ferric chloride as the catalyst, / fAhexylbenzene does not undergo isomerization and is isolated as such. [Pg.552]

With more reactive substances, 2iac or ferric chlorides may be substituted as catalysts (138). More elevated temperatures and high pressure are, however, generally needed, and only very reactive substrates (such as phenols) react readily. [Pg.560]

Ben2enesulfonic anhydride has been claimed to be superior to ben2enesulfonyl chloride (140). Catalysts used besides aluminum chloride are ferric chloride, antimony pentachloride, aluminum bromide, and boron trifluoride (141). [Pg.560]

Dinitrogen tetroxide is an effective Eriedel-Crafts nitrating agent (152) for aromatics in the presence of aluminum chloride, ferric chloride, or sulfuric acid (153). Dinitrogen pentoxide is a powerhil nitrating agent, even in the absence of catalysts, preferably in sulfuric acid solution (154). SoHd dinitrogen pentoxide is known to be the nitronium nitrate, (N02) (N02). The use of BE as catalyst has been reported (155). [Pg.561]

The mechanism and rate of hydrogen peroxide decomposition depend on many factors, including temperature, pH, presence or absence of a catalyst (7—10), such as metal ions, oxides, and hydroxides etc. Some common metal ions that actively support homogeneous catalysis of the decomposition include ferrous, ferric, cuprous, cupric, chromate, dichromate, molybdate, tungstate, and vanadate. For combinations, such as iron and... [Pg.471]

Make acid yields coumaUc acid when treated with fuming sulfuric acid (19). Similar treatment of malic acid in the presence of phenol and substituted phenols is a facile method of synthesi2ing coumarins that are substituted in the aromatic nucleus (20,21) (see Coumarin). Similar reactions take place with thiophenol and substituted thiophenols, yielding, among other compounds, a red dye (22) (see Dyes and dye intermediates). Oxidation of an aqueous solution of malic acid with hydrogen peroxide (qv) cataly2ed by ferrous ions yields oxalacetic acid (23). If this oxidation is performed in the presence of chromium, ferric, or titanium ions, or mixtures of these, the product is tartaric acid (24). Chlorals react with malic acid in the presence of sulfuric acid or other acidic catalysts to produce 4-ketodioxolones (25,26). [Pg.522]

Oxidation Catalysis. The multiple oxidation states available in molybdenum oxide species make these exceUent catalysts in oxidation reactions. The oxidation of methanol (qv) to formaldehyde (qv) is generally carried out commercially on mixed ferric molybdate—molybdenum trioxide catalysts. The oxidation of propylene (qv) to acrolein (77) and the ammoxidation of propylene to acrylonitrile (qv) (78) are each carried out over bismuth—molybdenum oxide catalyst systems. The latter (Sohio) process produces in excess of 3.6 x 10 t/yr of acrylonitrile, which finds use in the production of fibers (qv), elastomers (qv), and water-soluble polymers. [Pg.477]

Benzene Chlorination. In this process, benzene is chlorinated at 38—60°C in the presence of ferric chloride catalyst. The chlorobenzene is hydrolyzed with caustic soda at 400°C and 2.56 kPa (260 atm) to form sodium phenate. The impure sodium phenate reacts with hydrochloric acid to release the phenol from the sodium salt. The yield of phenol is about 82 mol % to that of the theoretical value based on benzene. Plants employing this technology have been shut down for environmental and economic reasons. [Pg.289]

Catalytic alkylation of aniline with diethyl ether, in the presence of mixed metal oxide catalysts, preferably titanium dioxide in combination with molybdenum oxide and/or ferric oxide, gives 63% V/-alkylation and 12% ring alkylation (14). [Pg.229]

Sulfosahcyhc acid is prepared by heating 10 parts of sahcyhc acid with 50 parts of concentrated sulfuric acid, by chlorosulfonation of sahcyhc acid and subsequent hydrolysis of the acid chloride, or by sulfonation with hquid sulfur trioxide in tetrachloroethylene. It is used as an intermediate in the production of dyestuffs, grease additives, catalysts, and surfactants. It is also useful as a colorimetric reagent for ferric iron and as a reagent for albumin. Table 9 shows the physical properties of sahcyhc acid derivatives. [Pg.290]

Styrene. Commercial manufacture of this commodity monomer depends on ethylbenzene, which is converted by several means to a low purity styrene, subsequendy distilled to the pure form. A small percentage of styrene is made from the oxidative process, whereby ethylbenzene is oxidized to a hydroperoxide or alcohol and then dehydrated to styrene. A popular commercial route has been the alkylation of benzene to ethylbenzene, with ethylene, after which the cmde ethylbenzene is distilled to give high purity ethylbenzene. The ethylbenzene is direcdy dehydrogenated to styrene monomer in the vapor phase with steam and appropriate catalysts. Most styrene is manufactured by variations of this process. A variety of catalyst systems are used, based on ferric oxide with other components, including potassium salts, which improve the catalytic activity (10). [Pg.494]

Ma.nufa.cture. Sulfur monochloride is made commercially by direct chlorination of sulfur, usually in a heel of sulfur chloride from a previous batch. The chlorination appears to proceed stepwise through higher sulfur chlorides (S Cl2, where x > 2). If conducted too quickly, the chlorination may yield products containing SCI2 and S Cl2 as well as S2CI2. A catalyst, eg, iron, iodine, or a trace of ferric chloride, faciUtates the reaction. The manufacture in the absence of Fe and Fe salts at 32—100°C has also been reported (149—151). [Pg.138]

Addition. Chlorine adds to vinyl chloride to form 1,1,2-trichloroethane [79-00-5] (44—46). Chlorination can proceed by either an ionic or a radical path. In the Hquid phase and in the dark, 1,1,2-trichloroethane forms by an ionic path when a transition-metal catalyst such as ferric chloride [7705-08-0], FeCl, is used. The same product forms in radical reactions up to 250°C. Photochernically initiated chlorination also produces... [Pg.414]

Direct Chlorination of Ethylene. Direct chlorination of ethylene is generally conducted in Hquid EDC in a bubble column reactor. Ethylene and chlorine dissolve in the Hquid phase and combine in a homogeneous catalytic reaction to form EDC. Under typical process conditions, the reaction rate is controlled by mass transfer, with absorption of ethylene as the limiting factor (77). Ferric chloride is a highly selective and efficient catalyst for this reaction, and is widely used commercially (78). Ferric chloride and sodium chloride [7647-14-5] mixtures have also been utilized for the catalyst (79), as have tetrachloroferrate compounds, eg, ammonium tetrachloroferrate [24411-12-9] NH FeCl (80). The reaction most likely proceeds through an electrophilic addition mechanism, in which the catalyst first polarizes chlorine, as shown in equation 5. The polarized chlorine molecule then acts as an electrophilic reagent to attack the double bond of ethylene, thereby faciHtating chlorine addition (eq. 6) ... [Pg.417]

Many agents have been proposed and patented including copper sulfate (34), zinc chloride (35), ferric chloride (36), aluminum chloride (36), and phosphoms pentoxide (37) ferric chloride, zinc chloride, and phosphoms pentoxide have been most widely used. The addition of these agents may vary from 0.1 to 3%, depending upon the feedstock and the desired characteristics of the product (Table 5) and all asphalt feedstocks do not respond to catalysts in the same way. Differences in feedstock composition are important qualifiers in determining the properties of the asphalt product. The important softening point-penetration relationship, which describes the temperature susceptibiUty of an asphalt, also varies with the source of the feedstock. Straight-reduced, air-blown, and air-blown catalytic asphalts from the same cmde feedstock also vary considerably. [Pg.364]

Table 5. Air-Blowing of Fluxes With and Without Ferric Chloride and Phosphorus Pentoxide Catalysts... Table 5. Air-Blowing of Fluxes With and Without Ferric Chloride and Phosphorus Pentoxide Catalysts...
Aromatic compounds may be chlorinated with chlorine in the presence of a catalyst such as iron, ferric chloride, or other Lewis acids. The halogenation reaction involves electrophilic displacement of the aromatic hydrogen by halogen. Introduction of a second chlorine atom into the monochloro aromatic stmcture leads to ortho and para substitution. The presence of a Lewis acid favors polarization of the chlorine molecule, thereby increasing its electrophilic character. Because the polarization does not lead to complete ionization, the reaction should be represented as shown in equation 26. [Pg.510]

Carbon Disulfide Chlorination. The chlorination of carbon disulfide [75-15-0] is a very old method of producing carbon tetrachloride that is still practiced commercially in the United States. In this process CS2 reacts continuously with chlorine in an annular reactor at 105—130°C. Product CCl is separated by distillation to a CS2 content of 0—5 ppm. By-product S2CI2 is reduced in a reactor at 450°C with hydrogen without a catalyst to give sulfur of 99.985% purity (32). Other processes use ferric chloride as a catalyst (33,34). [Pg.531]

Dichloroethane is produced commercially from hydrogen chloride and vinyl chloride at 20—55°C ia the presence of an aluminum, ferric, or 2iac chloride catalyst (8,9). Selectivity is nearly stoichiometric to 1,1-dichloroethane. Small amounts of 1,1,3-tfichlorobutane may be produced. Unreacted vinyl chloride and HCl exit the top of the reactor, and can be recycled or sent to vent recovery systems. The reactor product contains the Lewis acid catalyst and must be separated before distillation. Spent catalyst may be removed from the reaction mixture by contacting with a hydrocarbon or paraffin oil, which precipitates the metal chloride catalyst iato the oil (10). Other iaert Hquids such as sdoxanes and perfluorohydrocarbons have also been used (11). [Pg.6]

Dichloroethane is produced by the vapor- (28) or Hquid-phase chlorination of ethylene. Most Hquid-phase processes use small amounts of ferric chloride as the catalyst. Other catalysts claimed in the patent Hterature include aluminum chloride, antimony pentachloride, and cupric chloride and an ammonium, alkaU, or alkaline-earth tetrachloroferrate (29). The chlorination is carried out at 40—50°C with 5% air or other free-radical inhibitors (30) added to prevent substitution chlorination of the product. Selectivities under these conditions are nearly stoichiometric to the desired product. The exothermic heat of reaction vapori2es the 1,2-dichloroethane product, which is purified by distillation. [Pg.8]

Hydrolysis. 1,1,1-Trichloroethane heated with water at 75—160°C under pressure and in the presence of sulfuric acid or a metal chloride catalyst decomposes to acetyl chloride, acetic acid, or acetic anhydride (54). However, hydrolysis under normal use conditions proceeds slowly. The hydrolysis is 100—1000 times faster with trichloroethane dissolved in the water phase than vice versa. Refluxing 1,1,1-trichloroethane with ferric and gallium chloride... [Pg.9]

Hexachloroethane is formed in minor amounts in many industrial chlorination processes designed to produce lower chlorinated hydrocarbons, usually via a sequential chlorination step. Chlorination of tetrachloroethylene, in the presence of ferric chloride, at 100—140°C is one convenient method of preparing hexachloroethane (142). Oxychlorination of tetrachloroethylene, using a copper chloride catalyst (143) has also been used. Photochemical chlorination of tetrachloroethylene under pressure and below 60°C has been studied (144) and patented as a method of producing hexachloroethane (145), as has recovery of hexachloroethane from a mixture of other perchlorinated hydrocarbon derivatives via crystalH2ation in carbon tetrachloride. Chlorination of hexachlorobutadiene has also been used to produce hexachloroethane (146). [Pg.15]


See other pages where Ferric catalyst is mentioned: [Pg.43]    [Pg.43]    [Pg.44]    [Pg.46]    [Pg.47]    [Pg.714]    [Pg.136]    [Pg.43]    [Pg.43]    [Pg.44]    [Pg.46]    [Pg.47]    [Pg.714]    [Pg.136]    [Pg.396]    [Pg.52]    [Pg.278]    [Pg.551]    [Pg.561]    [Pg.444]    [Pg.482]    [Pg.332]    [Pg.342]    [Pg.310]    [Pg.16]    [Pg.292]    [Pg.507]    [Pg.509]    [Pg.14]   
See also in sourсe #XX -- [ Pg.208 ]




SEARCH



© 2024 chempedia.info