Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty oxidation

Fatty Oxidation Disorders (FOD) Family Support Group http www.fodsuppoit.oi mcad fam.htm... [Pg.5]

If it arises from pyruvate (Topic 14), the formation of acetyl CoA is pushed by the energetically favourable oxidative decarboxylation reaction. If, on the other hand, one starts from acetate, or similarly from a long-chain fatty acid waiting to enter the fatty oxidation spiral, the formation of the acyl CoA involves an activation reaction in which ATP is split. [Pg.301]

When the synthesis of lipids is reduced due to the presence of fatty acid analogs, the NEFAs will be diverted from the esterification pathway. The level of NEFAs in the hepatocytes treated with 3-thia fatty acids tended to decrease. This indicates that the mitochondrial P-oxidation was increased, as the peroxisomal P-oxidation was unchanged in these hepatocytes. Thus, it is likely that the non-P-oxidizable fatty acid analogs reduced the availability of fatty acids for TG-synthesis due to increased mitochondrial fatty oxidation. The lack of effect on the peroxisomal P-oxidation confirms the in vivo data that the hypotriglyceridemic effect of the analogs can be dissociated from the proliferation of peroxisomes." ... [Pg.128]

HisN03,(CH3)3N + -CH2 CH0H CH2C00-. Isolated from skeletal muscle. It acts as a carrier for ethanoyl groups and fatty acyl groups across the mitochondrial membrane during the biosynthesis or oxidation of fatty acids. [Pg.84]

CifiHjjOi. A fatly acid which is easily oxidized in air.-It occurs widely, in the form of glycerides, in vegetable oils and in mammalian lipids. Cholesieryl linoleale is an important constituent of blood. The add also occurs in lecithins. Together with arachidonic acid it is the most important essential fatty acid of human diet. [Pg.240]

The base lubricant is usually a petroleum oil while the thickener usually consists of a soap or soap mixture. In addition they may contain small amounts of free alkali, free fatty acid, glycerine, anti-oxidant, extreme-pressure agent, graphite or molybdenum disulphide. [Pg.242]

Gundlach K H and Kadlech J 1974 The influence of the oxide film on the current in AI-AI oxide-fatty acid monolayer-metal functions Chem. Phys. Lett. 25 293-5... [Pg.2631]

By oxidation processes, for example oxidation of hydrocarbons, fatty acids and even some metals. [Pg.277]

The decarbonylation-dehydration of the fatty acid 887 catalyzed by PdCl2(Ph3P)2 fO.Ol mol%) was carried out by heating its mixture with acetic-anhydride at 250 C to afford the terminal alkene 888 with high selectivity and high catalyst turnover number (12 370). The reaction may proceed by the oxidative addition of Pd to the mixed anhydride[755]. [Pg.259]

Fatty amides Fatty amine Fatty amine oxides Fatty amines... [Pg.392]

Secondary alcohols (C q—for surfactant iatermediates are produced by hydrolysis of secondary alkyl borate or boroxiae esters formed when paraffin hydrocarbons are air-oxidized ia the presence of boric acid [10043-35-3] (19,20). Union Carbide Corporation operated a plant ia the United States from 1964 until 1977. A plant built by Nippon Shokubai (Japan Catalytic Chemical) ia 1972 ia Kawasaki, Japan was expanded to 30,000 t/yr capacity ia 1980 (20). The process has been operated iadustriaHy ia the USSR siace 1959 (21). Also, predominantiy primary alcohols are produced ia large volumes ia the USSR by reduction of fatty acids, or their methyl esters, from permanganate-catalyzed air oxidation of paraffin hydrocarbons (22). The paraffin oxidation is carried out ia the temperature range 150—180°C at a paraffin conversion generally below 20% to a mixture of trialkyl borate, (RO)2B, and trialkyl boroxiae, (ROBO). Unconverted paraffin is separated from the product mixture by flash distillation. After hydrolysis of residual borate esters, the boric acid is recovered for recycle and the alcohols are purified by washing and distillation (19,20). [Pg.460]

Fatty acids are susceptible to oxidative attack and cleavage of the fatty acid chain. As oxidation proceeds, the shorter-chain fatty acids break off and produce progressively higher levels of malodorous material. This condition is known as rancidity. Another source of rancidity in fatty foods is the enzymatic hydrolysis of the fatty acid from the glycerol. The effect of this reaction on nutritional aspects of foods is poorly understood andhttie research has been done in the area. [Pg.117]

Chemical bleaching is never used on oils intended for edible use because it oxidizes unsaturated fatty acids to cause off-flavors. However, it does find wide usage for specialty linseed oil, for the paint industry, and fatty chemicals such as sorbitan esters of fatty acids and sodium stearoyl lactylate. Residual peroxide is destroyed by heating above its decomposition temperature. [Pg.125]

Detergents may be produced by the chemical reaction of fats and fatty acids with polar materials such as sulfuric or phosphoric acid or ethylene oxide. Detergents emulsify oil and grease because of their abiUty to reduce the surface tension and contact angle of water as well as the interfacial tension between water and oil. Recent trends in detergents have been to lower phosphate content to prevent eutrification of lakes when detergents are disposed of in municipal waste. [Pg.135]

A few spices, particularly rosemary and sage, are known to act as antioxidants which prevent rancidity due to oxidation in fats and fatty foods. [Pg.26]

The basic flow sheet for the flotation-concentration of nonsulfide minerals is essentially the same as that for treating sulfides but the family of reagents used is different. The reagents utilized for nonsulfide mineral concentrations by flotation are usually fatty acids or their salts (RCOOH, RCOOM), sulfonates (RSO M), sulfates (RSO M), where M is usually Na or K, and R represents a linear, branched, or cycHc hydrocarbon chain and amines [R2N(R)3]A where R and R are hydrocarbon chains and A is an anion such as Cl or Br . Collectors for most nonsulfides can be selected on the basis of their isoelectric points. Thus at pH > pH p cationic surfactants are suitable collectors whereas at lower pH values anion-type collectors are selected as illustrated in Figure 10 (28). Figure 13 shows an iron ore flotation flow sheet as a representative of high volume oxide flotation practice. [Pg.50]


See other pages where Fatty oxidation is mentioned: [Pg.129]    [Pg.31]    [Pg.218]    [Pg.218]    [Pg.244]    [Pg.168]    [Pg.183]    [Pg.186]    [Pg.344]    [Pg.99]    [Pg.596]    [Pg.49]    [Pg.183]    [Pg.186]    [Pg.344]    [Pg.129]    [Pg.31]    [Pg.218]    [Pg.218]    [Pg.244]    [Pg.168]    [Pg.183]    [Pg.186]    [Pg.344]    [Pg.99]    [Pg.596]    [Pg.49]    [Pg.183]    [Pg.186]    [Pg.344]    [Pg.21]    [Pg.101]    [Pg.129]    [Pg.292]    [Pg.298]    [Pg.446]    [Pg.2614]    [Pg.346]    [Pg.351]    [Pg.446]    [Pg.117]    [Pg.123]    [Pg.133]    [Pg.136]    [Pg.449]    [Pg.508]   
See also in sourсe #XX -- [ Pg.5 , Pg.8 ]

See also in sourсe #XX -- [ Pg.200 ]




SEARCH



© 2024 chempedia.info