Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fabrics cross-linked

Figures 9.1-9.3 illustrate these interconnected relationships.13 Figure 9.1 defines some of the terms used in this chapter. Small molecules are species with molecular weights below about 1,000. They are volatile at temperatures below say 200 100 °C. Clusters are oligomers derived from covalently linked small molecules. They have a lower volatility than small molecules and, if large enough, can be shaped by melting or by solvent evaporation methods. Linear polymers can be simple chain structures or may consist of rings linked together. In either case they are usually non-volatile and easily fabricated. Cross-linked systems can be produced from polymers or from clusters. The final ceramic may be amorphous or crystalline. Figures 9.1-9.3 illustrate these interconnected relationships.13 Figure 9.1 defines some of the terms used in this chapter. Small molecules are species with molecular weights below about 1,000. They are volatile at temperatures below say 200 100 °C. Clusters are oligomers derived from covalently linked small molecules. They have a lower volatility than small molecules and, if large enough, can be shaped by melting or by solvent evaporation methods. Linear polymers can be simple chain structures or may consist of rings linked together. In either case they are usually non-volatile and easily fabricated. Cross-linked systems can be produced from polymers or from clusters. The final ceramic may be amorphous or crystalline.
The most important cotton etherification treatments are those that produce wrinkle resistance in fabrics [331,333,334]. The aldehydes, formaldehydes, and glyoxals, react with the OH groups of two cellulose chains as well as those of one chain. Reaction in which a bond is established between the two cellulose molecules is called cross-linking and is the basis for profound changes in the cotton fiber. Cross-linking produces resiliency in the fiber to give the needed dimensional stabilization, wrinkle resistance, and crease retention for modern durable-press cellulosic fabrics. Cross-links based on etherification reactions traditionally have been used because of their durability to repeated laundering and wear. [Pg.87]

Different fabrication protocols have different and very specific constraints with regard to the properties of the material. For instance, with hot-embossing and injectionmolding methods, the glass transition temperature, melt temperature, and thermal expansion coefficient are some of the most critical parameters for successful fabrication. Cross-linked pol3miers and thermoplastics that con-... [Pg.889]

Cross-linking in LEDs clearly addresses the device development issue. By generating chemical bonds between polymer chains, the former layer can no longer be dissolved by the solvent of the subsequent layer. Devices comprising up to four cross-linked layers have been fabricated. Cross-linking is also going beyond the unique simplification of the device fabrication. Benefits in terms of device performance, device lifetime and thermal stability have also been evidenced. Photocuring is often combined to... [Pg.169]

A copolymer of NiPAAm with 1 mol% of a vinyl monomer carrying a protected isocyanate group was used by Hirata, Okazaki, and Iwata (2004) to fabricate cross-linked coatings. Upon heat treatment at 150 °C for 1.5 h, the isocyanate group is deprotected and cross-links to the amide group of the NiPAAm unit A dry layer thickness of 35 nm was obtained, but higher values are possible. Given that the substrate... [Pg.148]

These are water-soluble crystalline compounds sold as concentrated aqueous solutions. The methylol groups are highly reactive (118—122) and capable of being cured on the fabric by reaction with ammonia or amino compounds to form durable cross-linked finishes, probably having phosphine oxide stmctures after post-oxidizing. This finishing process, as developed by Albright Wilson, is known as the Proban process. [Pg.479]

CeUulose phosphate esters are also produced by treatment with sodium hexametaphosphate [14550-21-1] by the pad-dry-cure technique. These treated fabrics have high retention of breakiag and tearing strength (61). The reaction products contain more than 1.6% phosphoms and are iasoluble ia cupriethylenediamine [15243-01 -3] iadicating that some ceUulose cross-linking occurs. However, siace durable-press (DP) levels and wrinkle recovery values are low, it seems reasonable that only limited cross-linking takes place. [Pg.487]

THPC—Amide Process. The THPC—amide process is the first practical process based on THPC. It consists of a combination of THPC, TMM, and urea. In this process, there is the potential of polymer formation by THPC, melamine, and urea. There may also be some limited cross-linking between cellulose and the TMM system. The formulation also includes triethanolamine [102-71-6J, an acid scavenger, which slows polymerization at room temperature. Urea and triethanolamine react with the hydrochloric acid produced in the polymerization reaction, thus preventing acid damage to the fabric. This finish with suitable add-on passes the standard vertical flame test after repeated laundering (80). [Pg.489]

In this case, the components are mixed, the pH adjusted to about 6.0 with sodium hydroxide, and the solution appHed to the textile via a pad-dry-cure treatment. The combination of urea and formaldehyde given off from the THPC further strengthens the polymer and causes a limited amount of cross-linking to the fabric. The Na2HP04 not only acts as a catalyst, but also as an additional buffer for the system. Other weak bases also have been found to be effective. The presence of urea in any flame-retardant finish tends to reduce the amount of formaldehyde released during finishing. [Pg.489]

Miscellaneous. Flame-resistant cross-linked polyethylene can be made with a number of fluoroborates and antimony oxide. This self-extinguishing material may contain the fluoroborates of NH, Na", K", Ca ", Mg ", Sr ", or Ba " in amounts of 4—20% (76). Magnesium fluoroborate cataly2es the epoxy treatment of cotton fabrics for permanent-press finishes (77) (see Textiles). [Pg.167]

Polymers. AH nitro alcohols are sources of formaldehyde for cross-linking in polymers of urea, melamine, phenols, resorcinol, etc (see Amino RESINS AND PLASTICS). Nitrodiols and 2-hydroxymethyl-2-nitro-l,3-propanediol can be used as polyols to form polyester or polyurethane products (see Polyesters Urethane polymers). 2-Methyl-2-nitro-l-propanol is used in tires to promote the adhesion of mbber to tire cord (qv). Nitro alcohols are used as hardening agents in photographic processes, and 2-hydroxymethyl-2-nitro-l,3-propanediol is a cross-linking agent for starch adhesives, polyamides, urea resins, or wool, and in tanning operations (17—25). Wrinkle-resistant fabric with reduced free formaldehyde content is obtained by treatment with... [Pg.61]

Methacrylate monomers are most effective with derivatives of bisphenol A epoxy dimethacrylates, in which the methacrylate—methacrylate cross-linking reaction proceeds at a much faster pace than with styrene monomer. This proves beneficial in some fabrication processes requiring faster cure, such as pultmsion and resin-transfer mol ding (RTM). [Pg.318]

Catalyst Selection. The low resin viscosity and ambient temperature cure systems developed from peroxides have faciUtated the expansion of polyester resins on a commercial scale, using relatively simple fabrication techniques in open molds at ambient temperatures. The dominant catalyst systems used for ambient fabrication processes are based on metal (redox) promoters used in combination with hydroperoxides and peroxides commonly found in commercial MEKP and related perketones (13). Promoters such as styrene-soluble cobalt octoate undergo controlled reduction—oxidation (redox) reactions with MEKP that generate peroxy free radicals to initiate a controlled cross-linking reaction. [Pg.318]

This catalyst system is temperature-sensitive and does not function effectively at temperatures below 10°C but at temperatures over 35°C the generation of free radicals can be too prolific, giving rise to incomplete cross-linking formation. Redox systems are preferred for fabrication at temperatures ranging from 20—30°C (Fig. 5). [Pg.318]

Some fabrication processes, such as continuous panel processes, are mn at elevated temperatures to improve productivity. Dual-catalyst systems are commonly used to initiate a controlled rapid gel and then a fast cure to complete the cross-linking reaction. Cumene hydroperoxide initiated at 50°C with benzyl trimethyl ammonium hydroxide and copper naphthenate in combination with tert-huty octoate are preferred for panel products. Other heat-initiated catalysts, such as lauroyl peroxide and tert-huty perbenzoate, are optional systems. Eor higher temperature mol ding processes such as pultmsion or matched metal die mol ding at temperatures of 150°C, dual-catalyst systems are usually employed based on /-butyl perbenzoate and 2,5-dimethyl-2,5-di-2-ethyIhexanoylperoxy-hexane (Table 6). [Pg.318]


See other pages where Fabrics cross-linked is mentioned: [Pg.490]    [Pg.100]    [Pg.514]    [Pg.592]    [Pg.1478]    [Pg.483]    [Pg.490]    [Pg.100]    [Pg.514]    [Pg.592]    [Pg.1478]    [Pg.483]    [Pg.115]    [Pg.207]    [Pg.171]    [Pg.282]    [Pg.488]    [Pg.488]    [Pg.490]    [Pg.490]    [Pg.73]    [Pg.150]    [Pg.151]    [Pg.459]    [Pg.534]    [Pg.93]    [Pg.46]    [Pg.462]    [Pg.101]    [Pg.305]    [Pg.319]    [Pg.320]    [Pg.403]    [Pg.419]    [Pg.421]    [Pg.328]    [Pg.328]    [Pg.522]    [Pg.74]    [Pg.521]    [Pg.523]    [Pg.440]   
See also in sourсe #XX -- [ Pg.58 ]




SEARCH



Fabrication and cross-linking

Fabrication processes cross-linking

© 2024 chempedia.info