Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction process control

Extraction, a unit operation, is a complex and rapidly developing subject area (1,2). The chemistry of extraction and extractants has been comprehensively described (3,4). The main advantage of solvent extraction as an industrial process Hes in its versatiHty because of the enormous potential choice of solvents and extractants. The industrial appHcation of solvent extraction, including equipment design and operation, is a subject in itself (5). The fundamentals and technology of metal extraction processes have been described (6,7), as has the role of solvent extraction in relation to the overall development and feasibiHty of processes (8). The control of extraction columns has also been discussed (9). [Pg.60]

An extraction plant should operate at steady state in accordance with the flow-sheet design for the process. However, fluctuation in feed streams can cause changes in product quaUty unless a sophisticated system of feed-forward control is used (103). Upsets of operation caused by flooding in the column always force shutdowns. Therefore, interface control could be of utmost importance. The plant design should be based on (/) process control (qv) decisions made by trained technical personnel, (2) off-line analysis or limited on-line automatic analysis, and (J) control panels equipped with manual and automatic control for motor speed, flow, interface level, pressure, temperature, etc. [Pg.72]

Tantalum Compounds. Potassium heptafluorotantalate [16924-00-8] K TaF, is the most important tantalum compound produced at plant scale. This compound is used in large quantities for tantalum metal production. The fluorotantalate is prepared by adding potassium salts such as KCl and KF to the hot aqueous tantalum solution produced by the solvent extraction process. The mixture is then allowed to cool under strictiy controlled conditions to get a crystalline mass having a reproducible particle size distribution. To prevent the formation of oxyfluorides, it is necessary to start with reaction mixtures having an excess of about 5% HF on a wt/wt basis. The acid is added directiy to the reaction mixture or together with the aqueous solution of the potassium compound. Potassium heptafluorotantalate is produced either in a batch process where the quantity of output is about 300—500 kg K TaFy, or by a continuously operated process (28). [Pg.327]

Removing an analyte from a matrix using supercritical fluid extraction (SEE) requires knowledge about the solubiUty of the solute, the rate of transfer of the solute from the soHd to the solvent phase, and interaction of the solvent phase with the matrix (36). These factors collectively control the effectiveness of the SEE process, if not of the extraction process in general. The range of samples for which SEE has been appHed continues to broaden. Apphcations have been in the environment, food, and polymers (37). [Pg.242]

A variation on the wet-spinning technique involves extruding into a heated gas environment. In this dry-spinning process, the temperature and composition of the gas control the extraction process. [Pg.121]

The unique advantage of the plasma chemical method is the ability to collect the condensate, which can be used for raw material decomposition or even liquid-liquid extraction processes. The condensate consists of a hydrofluoric acid solution, the concentration of which can be adjusted by controlling the heat exchanger temperature according to a binary diagram of the HF - H20 system [534]. For instance, at a temperature of 80-100°C, the condensate composition corresponds to a 30-33% wt. HF solution. [Pg.314]

The alternative is hexane, which because of the explosion hazard requires a more expensive type of extractor construction. After the extraction the product is dull gray. The continuos sheet is slit to the final width according to customer requirements, searched by fully automatic detectors for any pinholes, wound into rolls of about 1 m diameter (corresponding to a length of 900-1000 m), and packed for shipping. Such a continuous production process is excellently suited for supervision by modern quality assurance systems, such as statistical process control (SPC). Figures 7-9 give a schematic picture of the production process for microporous polyethylene separators. [Pg.259]

All feed streams are sterilised before being metered into the fermentation vessel. Contaminants resistant to the antibiotic rarely find their way into the fermenter. When they find a way to contaminate media, their effects are so catastrophic that prevention is of paramount importance. A resistant, (3-lactamase producing, fast-growing bacterial contaminant can destroy the penicillin.5 The contaminants not only consume nutrients intended for the fungus, but also cause loss of pH control and interference with the subsequent extraction process. [Pg.267]

HPLC/MS and HPLC/MS/MS analyses are susceptible to matrix effects, either signal enhancement or suppression, and are often encountered when the cleanup process is not sufficient. To assess whether matrix effects influence the recovery of analytes, a post-extraction fortified sample (fortified extract of control sample that is purified and prepared in the same manner as with the other samples) should be included in each analytical set. The response of the post-extraction fortified sample is assessed against that of standards and samples. Matrix effects can be reduced or corrected for by dilution of samples, additional cleanup, or using calibration standards in the sample matrix for quantitation. [Pg.1152]

A knowledge of the extraction equilibria between the organic and aqueous phases helps to identify the operational variables that can control the solvent extraction process. An example - the extraction of copper from a copper sulfate solution using a chelating reagent (HR) - is considered. This is one of the best studied examples of solvent extraction. Normally, the system would not be described as a water-hydrocarbon dual-phase system, as it is in fact the Cu2+, SO-, H+, R-, and R-, and the equation... [Pg.520]

Isolation of the products from complex matrixes (e.g. polymer and water, air, or soil) is often a demanding task. In the process of stability testing (10 days at 40 °C, 1 h at reflux temperature) of selected plastic additives (DEHA, DEHP and Irganox 1076) in EU aqueous simulants, the additive samples after exposure were simply extracted from the aqueous simulants with hexane [63]. A sonication step was necessary to ensure maximum extraction of control samples. Albertsson et al. developed several sample preparation techniques using headspace-GC-MS [64], LLE [65] and SPE [66-68]. A practical guide to LLE is available [3]. [Pg.60]

Extraction of antioxidants in polypropylene production. Process control. [Pg.72]

Many analytical techniques are in use for the qualitative and quantitative evaluation of monomers and oligomers extracted from PA6 (GC, differential refrac-tometry, IR, PC, SEC, HPLC, RPLC, etc.). FTIR has been used for quantitative analysis of caprolactam oligomer content (extract %) in polyamide-6 [113], The method, which involves a 3h extraction in boiling methanol, is suitable for process control and plant environment. Kolnaar [114] has used FTIR characterisation of fractional extracts with pentane, hexane, and heptane of HDPE for blow moulding applications. Vinyl acetate in packaging film has similarly been determined by quantitative FUR. [Pg.316]

The vacuum extraction process involves using vapor extraction wells alone or in combination with air injection wells. Vacuum blowers are used to create the movement of air through the soil. The air flow strips the VOCs from the soil and carries them to the surface. Figure 18.14 shows the flow diagram for such a process. During extraction, water may also be extracted along with vapor. The mixture should be sent to a liquid-vapor separator. The separation process results in both liquid and vapor residuals that require further treatment. Carbon adsorption is used to treat the vapor and water streams, leaving clean water and air for release, and spent GAC for reuse or disposal. Air emissions from the system are typically controlled by adsorption of the volatiles onto activated carbon, by thermal destruction, or by condensation. [Pg.735]

This field is therefore at an exciting stage. Ion-selective electrodes have a proven track record in terms of clinical and biomedical analysis, with a well-developed theory and a solid history of fundamental research and practical applications. With novel directions in achieving extremely low detection limits and instrumental control of the ion extraction process this field has the opportunity to give rise to many new bioana-lytical measurement tools that may be truly useful in practical chemical analysis. [Pg.132]

FIA star 5010 Modular, semi- or fully automatic operation. May be operated with process controller microprocessor. Can be set up in various combinations with 5017 sampler and superflow software which is designed to run on IBM PC/XT computer 60-180 samples h Dialysis for in-line sample preparation and in-line solvent extraction.Thermostat to speed up reactions. Spectrophotometer (400-700nm) or photometer can be connected to any flow through detector, e.g. UV/visible, inductively coupled plasma, atomic absorption spectrometer and ion-selective electrodes... [Pg.35]

The kinetics of solvent extraction is a fnnction of both the various chemical reactions occurring in the system and the rates of diffusion of the various species that control the chemistry of the extraction process. [Pg.209]

Consider two simple cases of extraction processes in which kinetics are controlled by interfacial film diffusion (the solutions are always considered stirred). The two cases are treated with the simplifying assumptions introduced in section 2 (i.e., steady-state and linear concentration gradients throughout the diffusional films). [Pg.241]


See other pages where Extraction process control is mentioned: [Pg.76]    [Pg.76]    [Pg.72]    [Pg.23]    [Pg.38]    [Pg.88]    [Pg.539]    [Pg.2500]    [Pg.423]    [Pg.127]    [Pg.133]    [Pg.423]    [Pg.260]    [Pg.211]    [Pg.477]    [Pg.156]    [Pg.307]    [Pg.758]    [Pg.824]    [Pg.764]    [Pg.116]    [Pg.738]    [Pg.148]    [Pg.606]    [Pg.115]    [Pg.862]    [Pg.90]    [Pg.215]    [Pg.14]    [Pg.231]    [Pg.210]    [Pg.212]    [Pg.230]   
See also in sourсe #XX -- [ Pg.530 , Pg.531 ]




SEARCH



Extraction process

Extractive processes

Processing extraction

© 2024 chempedia.info