Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Examples of stimulants

Reviews of taste sensations normally concentrate on four basic tastes - sweet, salty, sour and bitter (7,2) however, other oral sensations can contribute important information to the perceived flavor (3), Examples of stimulants evoking these very different sensory sensations are shown in TABLE I. Studies on the mechaiusms of perception are usually restricted to sensation-specific stimuli however, food flavors represent an interaction among the various sensations. This chapter describes recent... [Pg.10]

TABLE I. Examples of Stimulants Exhibiting Different Taste/Olfactory Sensations... [Pg.11]

Table 8. Examples of stimulants that are chemoattractants for some species and chemorepellents for other species. Table 8. Examples of stimulants that are chemoattractants for some species and chemorepellents for other species.
Stimulants are drugs that Increase the activity of the central nervous system. Examples of stimulants are caffeine, amphetamines, iricotine, and cocaine. [Pg.489]

Pitting occurs witli many metals in halide containing solutions. Typical examples of metallic materials prone to pitting corrosion are Fe, stainless steels and Al. The process is autocatalytic, i.e., by initial dissolution, conditions are established which furtlier stimulate dissolution inside tire pit tire metal (Fe in tire example of figure C2.8.6 dissolves. [Pg.2727]

The remarks of this and the last section are only a small fraction of what might be said about these important materials. We have commented on some aspects of the polymerization processes and of the polymers themselves that have a direct bearing on the concepts discussed here and elsewhere in this volume. This material provides an excellent example of the symbiosis between theoretical and application-oriented points of view. Each stimulates and reinforces the other with new challenges, although it must be conceded that many industrial processes reach a fairly high degree of empirical refinement before the conceptual basis is quantitatively developed. [Pg.309]

The aroma of fmit, the taste of candy, and the texture of bread are examples of flavor perception. In each case, physical and chemical stmctures ia these foods stimulate receptors ia the nose and mouth. Impulses from these receptors are then processed iato perceptions of flavor by the brain. Attention, emotion, memory, cognition, and other brain functions combine with these perceptions to cause behavior, eg, a sense of pleasure, a memory, an idea, a fantasy, a purchase. These are psychological processes and as such have all the complexities of the human mind. Flavor characterization attempts to define what causes flavor and to determine if human response to flavor can be predicted. The ways ia which simple flavor active substances, flavorants, produce perceptions are described both ia terms of the physiology, ie, transduction, and psychophysics, ie, dose-response relationships, of flavor (1,2). Progress has been made ia understanding how perceptions of simple flavorants are processed iato hedonic behavior, ie, degree of liking, or concept formation, eg, crispy or umami (savory) (3,4). However, it is unclear how complex mixtures of flavorants are perceived or what behavior they cause. Flavor characterization involves the chemical measurement of iadividual flavorants and the use of sensory tests to determine their impact on behavior. [Pg.1]

Control of secretion of anterior pituitary hormones also includes inhibition by hormones produced by target organs. For example, CRH stimulates the anterior pituitary to secrete ACTH, which in turn stimulates the adrenal cortex to secrete corticosteroids. Corticosteroids then feed back to inhibit the secretion of ACTH. Feedback mechanisms are important for the control of most hormones. For example, insulin (qv) secretion from the pancreas increases in response to increased blood glucose resulting from ingestion of a meal. Insulin increases tissue uptake and metaboHsm of glucose, which lowers blood glucose and in turn reduces insulin secretion. [Pg.171]

The oil industry uses microencapsulated oil-field chemicals. For example, microencapsulated breaker is deHvered into a subterranean formation where it breaks the fracturing Hquid used to stimulate the recovery of fluids such as cmde oil or natural gas. Examples of breakers encapsulated include oxidi2ers, en2ymes, and various mineral or organic acids. [Pg.325]

The prediction of the Woodward-Hofrmann rules that thermal concerted cycloadditions are allowed for combinations in which 4 -1- 2 7c electrons are involved has stimulated the search for combinations with 10 and larger numbers of participating electrons. An example of a [6 -1- 4] cycloaddition is the reaction of tropone with 2,5-dimethyl-3,4-diphenylcyclopentadienone ... [Pg.650]

Subsidy is a transfer of money from government to an individual or a firm to stimulate undertaking a particular activity. Subsidies and subsidy-hke programs arc major parts of energy policies. However, such energy grants are only one example of government aid and not the most important examples. The basic economic principle that people respond favorably to financial incentives implies that such transfers stimulate the action that is aided. [Pg.1102]

Further involvement by the typical industrial or commercial utility customer, both large and small, was stimulated by time-of-day price incentives. Encouragement was provided in the form of reduced rates if use of electricity was shifted from peak periods of the day to off-peak or shoulder-peak periods. Even the residential customer was invited to participate in load shifting with price incentives or rewards. A popular example of the day was encouraging the household laundi y activity to be moved to late-night hours. This suggestion was met with vaiying enthusiasm. [Pg.1202]

Even small traces of certain corrosion stimulants, notably soluble chlorides and sulphates, can maintain a continuing corrosion process under a paint film because the salts accelerate the initial dissolution of ferrous iron (and other metal ions) but are not immobilised in the hydrated oxide corrosion products. Filiform corrosion is the most spectacular example of this phenomenon, but progressive spread, preceded by blistering, is also observed from scratches or other breaks in a coating, for example during salt spray tests. [Pg.618]

Reaction of adsorbed inhibitors In some cases, the adsorbed corrosion inhibitor may react, usually by electro-chemical reduction, to form a product which may also be inhibitive. Inhibition due to the added substance has been termed primary inhibition and that due to the reaction product secondary inhibition " . In such cases, the inhibitive efficiency may increase or decrease with time according to whether the secondary inhibition is more or less effective than the primary inhibition. Some examples of inhibitors which react to give secondary inhibition are the following. Sulphoxides can be reduced to sulphides, which are more efficient inhibitorsQuaternary phosphonium and arsonium compounds can be reduced to the corresponding phosphine or arsine compounds, with little change in inhibitive efficiency . Acetylene compounds can undergo reduction followed by polymerisation to form a multimolecular protective film . Thioureas can be reduced to produce HS ions, which may act as stimulators of... [Pg.809]

The corrosion of iron (or steel) can be inhibited by the anions of most weak acids under suitable conditions " . However, other anions, particularly those of strong acids, tend to prevent the action of inhibitive anions and stimulate breakdown of the protective oxide film. Examples of such aggressive anions are the halides, sulphate, nitrate, etc. Brasher has shown that, in general, most anions exhibit some inhibitive and some aggressive behaviour towards iron. The balance between the inhibitive and aggressive properties of a specific anion depends on the following main factors (which are themselves interdependent). [Pg.814]

The majority of functional assays involve primary signaling. In the case of GPCRs, this involves activation of G-proteins. However, receptors have other behaviors— some of which can be monitored to detect ligand activity. For example, upon stimulation many receptors are desensitized through phosphorylation and subsequently taken into the cell and either recycled back to the cell surface or digested. This process can be monitored by observing ligand-mediated receptor internalization. For... [Pg.84]

FIGURE 9.11 An example of a cellular system designed to study inflammatory processes related to asthma and arthritis. Multiple readouts (ELISA measurements) from each of four cell types are obtained under conditions of four contexts (mixture of stimulating agents). This results in a complex heat map of basal cellular activities that can be affected by compounds. The changes in the heat map (measured as ratios of basal to compound-altered activity) are analyzed statistically to yield associations and differences. [Pg.187]

This review will endeavor to outline some of the advantages of Raman Spectroscopy and so stimulate interest among workers in the field of surface chemistry to utilize Raman Spectroscopy in the study of surface phenomena. Up to the present time, most of the work has been directed to adsorption on oxide surfaces such as silicas and aluminas. An examination of the spectrum of a molecule adsorbed on such a surface may reveal information as to whether the molecule is physically or chemically adsorbed and whether the adsorption site is a Lewis acid site (an electron deficient site which can accept electrons from the adsorbate molecule) or a Bronsted acid site (a site which can donate a proton to an adsorbate molecule). A specific example of a surface having both Lewis and Bronsted acid sites is provided by silica-aluminas which are used as cracking catalysts. [Pg.294]

There has been considerable focus on the development of drugs that lead to a reduction in the total amount of adipose tissue. These include agents targeted at limiting fat absorption, the inhibition of appetite, and the stimulation of energy expenditure (thermogenesis)-or a combination thereof. The best example of drugs,... [Pg.40]

Although blood pressure control follows Ohm s law and seems to be simple, it underlies a complex circuit of interrelated systems. Hence, numerous physiologic systems that have pleiotropic effects and interact in complex fashion have been found to modulate blood pressure. Because of their number and complexity it is beyond the scope of the current account to cover all mechanisms and feedback circuits involved in blood pressure control. Rather, an overview of the clinically most relevant ones is presented. These systems include the heart, the blood vessels, the extracellular volume, the kidneys, the nervous system, a variety of humoral factors, and molecular events at the cellular level. They are intertwined to maintain adequate tissue perfusion and nutrition. Normal blood pressure control can be related to cardiac output and the total peripheral resistance. The stroke volume and the heart rate determine cardiac output. Each cycle of cardiac contraction propels a bolus of about 70 ml blood into the systemic arterial system. As one example of the interaction of these multiple systems, the stroke volume is dependent in part on intravascular volume regulated by the kidneys as well as on myocardial contractility. The latter is, in turn, a complex function involving sympathetic and parasympathetic control of heart rate intrinsic activity of the cardiac conduction system complex membrane transport and cellular events requiring influx of calcium, which lead to myocardial fibre shortening and relaxation and affects the humoral substances (e.g., catecholamines) in stimulation heart rate and myocardial fibre tension. [Pg.273]


See other pages where Examples of stimulants is mentioned: [Pg.262]    [Pg.708]    [Pg.326]    [Pg.174]    [Pg.262]    [Pg.708]    [Pg.326]    [Pg.174]    [Pg.1990]    [Pg.206]    [Pg.388]    [Pg.205]    [Pg.283]    [Pg.100]    [Pg.232]    [Pg.444]    [Pg.143]    [Pg.53]    [Pg.751]    [Pg.752]    [Pg.365]    [Pg.24]    [Pg.278]    [Pg.389]    [Pg.16]    [Pg.273]    [Pg.520]    [Pg.569]    [Pg.590]    [Pg.826]    [Pg.965]    [Pg.965]    [Pg.1068]   
See also in sourсe #XX -- [ Pg.10 , Pg.111 ]




SEARCH



© 2024 chempedia.info