Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Example Reaction Mechanism

Heterogeneous reaction mechanisms range from the very simple to the complex. Many features of the formalism presented in this chapter are illustrated by the catalytic combustion reaction mechanism given in Table 11.1. The surface-reaction mechanism is due to Sidwell et al. [361], which in turn had its origins with the work of Schmidt [173,174] and Deutschmann [96,97,101], [Pg.477]

Surface species in the mechanism are denoted (s) in the species name. In this reaction mechanism, only reaction 7 was written as a reversible reaction all of the rest were specified as irreversible. Formally, reactions 12 and 14 should be third order in the concentration of Pdfs) and O(s), respectively. However, the reaction order has been overridden to make each one first-order with respect to the surface species. In some instances, reactions have been specified with sticking coefficients, such as reactions 1, 3, 11, and 13. The other reactions use the three-parameter modified Arrhenius form to express the temperature-dependent rate constant. [Pg.477]

The mechanism includes adsorption reactions of gas-phase species upon the surface (e.g., reactions 1, 3, 11, and 13), desorption reactions (e.g., reactions 2, 4, 6, 8, and 9), reactions between surface species (e.g., reactions 5, 7, and 10), and even more complex reaction on the surface (e.g., reactions 12 and 14). [Pg.478]

A simulation of catalytic combustion in a stagnation-flow reactor, using this reaction mechanism, is given in Chapter 17. [Pg.478]

1 To conduct ultra-high-vacuum surface science experiments, often a clean surface is [Pg.479]


Special isotope ratio mass spectrometers are needed to measure the small variations, which are too small to be read off from a spectrum obtained on a routine mass spectrometer. Ratios of isotopes measured very accurately (usually as 0/00, i.e., as parts per 1000 [mil] rather than parts per 100 [percent]) give information on, for example, reaction mechanisms, dating of historic samples, or testing for drugs in metabolic systems. Such uses are illustrated in the main text. [Pg.425]

Organic solid-state reactions are also useful for studying molecular dynamics, since dynamic behavior of molecules in the solid-state can easily be monitored by spectral measurements and X-ray analysis. For example, reaction mechanisms can easily be clarified by studying molecular dynamics in the solid state. [Pg.322]

It should taken into account that the effects of the supporting electrolyte can also be adverse, for example, reaction mechanisms can be drastically altered (the ions of the supporting electrolyte may complicate the electroactive species through ionic association processes). However, except in specific cases, the advantages indicated make the addition of supporting electrolyte in excess a standard procedure. [Pg.50]

The concept of reaction mechanism is very broad and its exact meaning depends to considerable extent on the point of view from which a given problem is to be analysed. Thus, for example, reaction mechanisms can be understood differently by a chemical physicist analysing a given reaction at the level of elementary collisions in crossed molecular beams, and by an organic chemist analysing the reaction course by the formalism of phenomenological kinetics. This implies that if one wants to speak about the mechanism of the reaction it is always necessary to specify also the point of view, from which the reaction is analysed. Thus, for example, in the case of usual reactions performed on the preparative scale, the term reaction mechanism is used to denote the detailed specification of whether the reaction proceeds in one elementary step or whether some, more or less stable, intermediates intervene. [Pg.6]

Given the discussion in Section 5.6 of adsorption and reactions on catalyst surfaces, it is reasonable to expect our best catalyst rate expres-sion.s may be of the Hougen-Watson form. In this section we study an example reaction mechanism of this form. Consider the following reaction and rate expression... [Pg.205]

In this chapter, we provide a succinct review of some of the advances in the development and application of ab initio methods toward understanding the intrinsic reactivity of the metal and the influence of the reactive site and its environment. We draw predominantly from some of our own recent efforts. More specifically we describe (a) the chemistry of the aqueous-phase on transition metal surfaces and its influence on the kinetics and thermodynamics within example reaction mechanisms, and (b) computational models of the electrode interface that are able to account for a referenced and tunable surface potential and the role of the surface potential in controlling electro-catalytic reactions. These properties are discussed in detail for an example reaction of importance to fuel cell electrocatalysis methanol dehydrogenation over platinum(ll 1) interfaces [24,25]. [Pg.552]

Reactions during which a strong color is formed, changed, or disappears are called color reactions. They represent a common means for the detection of organic compounds and an indispensable supplement to chromatographic methods, and form the basis of colorimetric methods. Their quantitative performance is usually very simple, and unfortimately this often means that they are not carried out with sufficient care. This results in the failure of the experiment, and some investigators therefore imjustly consider them as insufficiently reliable. In actual fact, color reactions have their own rules which must be respected. In addition to the chemical problems of the reaction, for example, reaction mechanism, which can be influenced by a number of structural factors and by the medium, color reactions are complicated by another factor, the problem of the color itself, i.e., by the relationship between the structure and the coloration (p. 79). [Pg.42]

Homogeneous catalysts. With a homogeneous catalyst, the reaction proceeds entirely in the vapor or liquid phase. The catalyst may modify the reaction mechanism by participation in the reaction but is regenerated in a subsequent step. The catalyst is then free to promote further reaction. An example of such a homogeneous catalytic reaction is the production of acetic anhydride. In the first stage of the process, acetic acid is pyrolyzed to ketene in the gas phase at TOO C ... [Pg.46]

A tremendous amount of work has been done to delineate the detailed reaction mechanisms for many catalytic reactions on well characterized surfaces [1, 45]. Many of tiiese studies involved impinging molecules onto surfaces at relatively low pressures, and then interrogating the surfaces in vacuum with surface science teclmiques. For example, a usefiil technique for catalytic studies is TPD, as the reactants can be adsorbed onto the sample in one step, and the products fonned in a second step when the sample is heated. Note that catalytic surface studies have also been perfonned by reacting samples in a high-pressure cell, and then returning them to vacuum for measurement. [Pg.302]

Gas-phase reactions play a fundamental role in nature, for example atmospheric chemistry [1, 2, 3, 4 and 5] and interstellar chemistry [6], as well as in many teclmical processes, for example combustion and exliaust fiime cleansing [7, 8 and 9], Apart from such practical aspects the study of gas-phase reactions has provided the basis for our understanding of chemical reaction mechanisms on a microscopic level. The typically small particle densities in the gas phase mean that reactions occur in well defined elementary steps, usually not involving more than three particles. [Pg.759]

The system of coupled differential equations that result from a compound reaction mechanism consists of several different (reversible) elementary steps. The kinetics are described by a system of coupled differential equations rather than a single rate law. This system can sometimes be decoupled by assuming that the concentrations of the intennediate species are small and quasi-stationary. The Lindemann mechanism of thermal unimolecular reactions [18,19] affords an instructive example for the application of such approximations. This mechanism is based on the idea that a molecule A has to pick up sufficient energy... [Pg.786]

The Lindemaim mechanism for thennally activated imimolecular reactions is a simple example of a particular class of compound reaction mechanisms. They are mechanisms whose constituent reactions individually follow first-order rate laws [11, 20, 36, 48, 49, 50, 51, 52, 53, 54, 55 and 56] ... [Pg.789]

Figure B2.5.2. Schematic relaxation kinetics in a J-jump experiment, c measures the progress of the reaction, for example the concentration of a reaction product as a fiinction of time t (abscissa with a logaritlnnic time scale). The reaction starts at (q. (a) Simple relaxation kinetics with a single relaxation time, (b) Complex reaction mechanism with several relaxation times x.. The different relaxation times x. are given by the turning points of e as a fiinction of ln((). Adapted from [110]. Figure B2.5.2. Schematic relaxation kinetics in a J-jump experiment, c measures the progress of the reaction, for example the concentration of a reaction product as a fiinction of time t (abscissa with a logaritlnnic time scale). The reaction starts at (q. (a) Simple relaxation kinetics with a single relaxation time, (b) Complex reaction mechanism with several relaxation times x.. The different relaxation times x. are given by the turning points of e as a fiinction of ln((). Adapted from [110].
The free radicals that we usually see in carbon chemistry are much less stable than these Simple alkyl radicals for example require special procedures for their isolation and study We will encounter them here only as reactive intermediates formed m one step of a reaction mechanism and consumed m the next Alkyl radicals are classified as primary secondary or tertiary according to the number of carbon atoms directly attached to the carbon that bears the unpaired electron... [Pg.168]

Cation (Section 1 2) Positively charged ion Cellobiose (Section 25 14) A disacchande in which two glu cose units are joined by a 3(1 4) linkage Cellobiose is oh tamed by the hydrolysis of cellulose Cellulose (Section 25 15) A polysaccharide in which thou sands of glucose units are joined by 3(1 4) linkages Center of symmetry (Section 7 3) A point in the center of a structure located so that a line drawn from it to any element of the structure when extended an equal distance in the op posite direction encounters an identical element Benzene for example has a center of symmetry Cham reaction (Section 4 17) Reaction mechanism m which a sequence of individual steps repeats itself many times usu ally because a reactive intermediate consumed m one step is regenerated m a subsequent step The halogenation of alkanes is a chain reaction proceeding via free radical intermediates... [Pg.1278]

Chemical kinetic methods also find use in determining rate constants and elucidating reaction mechanisms. These applications are illustrated by two examples from the chemical kinetic analysis of enzymes. [Pg.638]

White Phosphorus Oxidation. Emission of green light from the oxidation of elemental white phosphoms in moist air is one of the oldest recorded examples of chemiluminescence. Although the chemiluminescence is normally observed from sotid phosphoms, the reaction actually occurs primarily just above the surface with gas-phase phosphoms vapor. The reaction mechanism is not known, but careful spectral analyses of the reaction with water and deuterium oxide vapors indicate that the primary emitting species in the visible spectmm are excited states of (PO)2 and HPO or DPO. Ultraviolet emission from excited PO is also detected (196). [Pg.271]

The traditional design method normally makes use of overall values even when resistance to transfer lies predominantly in the liquid phase. For example, the COg-NaOH system most commonly used for comparing the Kg< values of various tower packings is a liqiiid-phase-controlled system. When the liqiiid phase is controlling, extrapolation to different concentration ranges or operating conditions is not recommended since changes in the reaction mechanism can cause /cl to vary unexpectedly and the overall values do not explicitly show such effects. [Pg.1364]

The epoxy ring may then be readily attacked not only by active hydrogen and available ions but even by tertiary amines. For example, with the latter it is believed that the reaction mechanism is as follows ... [Pg.751]

Some stereospecific reactions are listed in Scheme 2.9. Examples of stereoselective reactions are presented in Scheme 2.10. As can be seen in Scheme 2.9, the starting materials in these stereospecific processes are stereoisomeric pairs, and the products are stereoisomeric with respect to each other. Each reaction proceeds to give a single stereoisomer without contamination by the alternative stereoisomer. The stereochemical relationships between reactants and products are determined by the reaction mechanism. Detailed discussion of the mechanisms of these reactions will be deferred until later chapters, but some comments can be made here to illustrate the concept of stereospecificity. [Pg.98]

These examples illustrate the relationship between kinetic results and the determination of reaction mechanism. Kinetic results can exclude from consideration all mechanisms that require a rate law different from the observed one. It is often true, however, that related mechanisms give rise to identical predicted rate expressions. In this case, the mechanisms are kinetically equivalent, and a choice between them is not possible on the basis of kinetic data. A further limitation on the information that kinetic studies provide should also be recognized. Although the data can give the composition of the activated complex for the rate-determining step and preceding steps, it provides no information about the structure of the intermediate. Sometimes the structure can be inferred from related chemical experience, but it is never established by kinetic data alone. [Pg.199]

Because the rates of chemical reactions are controlled by the free energy of the transition state, information about the stmcture of transition states is crucial to understanding reaction mechanism. However, because transition states have only transitory existence, it is not possible to make experimental measurements that provide direct information about their structure.. Hammond has discussed the circumstances under which it is valid to relate transition-state stmcture to the stmcture of reactants, intermediates, and products. His statements concerning transition-state stmcture are known as Hammond s postulate. Discussing individual steps in a reaction mechanism, Hammond s postulate states if two states, as, for example, a transition state and an unstable intermediate, occur consecutively during a reaction process and have neariy the same energy content, their interconversion will involve only a small reorganization of molecular stmcture. ... [Pg.217]

The details of proton-transfer processes can also be probed by examination of solvent isotope effects, for example, by comparing the rates of a reaction in H2O versus D2O. The solvent isotope effect can be either normal or inverse, depending on the nature of the proton-transfer process in the reaction mechanism. D3O+ is a stronger acid than H3O+. As a result, reactants in D2O solution are somewhat more extensively protonated than in H2O at identical acid concentration. A reaction that involves a rapid equilibrium protonation will proceed faster in D2O than in H2O because of the higher concentration of the protonated reactant. On the other hand, if proton transfer is part of the rate-determining step, the reaction will be faster in H2O than in D2O because of the normal primary kinetic isotope effect of the type considered in Section 4.5. [Pg.232]

The study of the stereochemical course of organic reactions often leads to detailed insight into reaction mechanisms. Mechanistic postulates ftequently make distinctive predictions about the stereochemical outcome of the reaction. Throughout the chapters dealing with specific types of reactions, consideration will be given to the stereochemistry of a reaction and its relationship to the reaction mechanism. As an example, the bromination of alkenes can be cited. A very simple mechanism for bromination is given below ... [Pg.246]

A catalyst is defined as a substance that influences the rate or the direction of a chemical reaction without being consumed. Homogeneous catalytic processes are where the catalyst is dissolved in a liquid reaction medium. The varieties of chemical species that may act as homogeneous catalysts include anions, cations, neutral species, enzymes, and association complexes. In acid-base catalysis, one step in the reaction mechanism consists of a proton transfer between the catalyst and the substrate. The protonated reactant species or intermediate further reacts with either another species in the solution or by a decomposition process. Table 1-1 shows typical reactions of an acid-base catalysis. An example of an acid-base catalysis in solution is hydrolysis of esters by acids. [Pg.26]

This is an interesting exercise, but we should not become excessively concerned with formal schemes for the identification of the rds. We want to know the rds because it is a piece of information about the reaction mechanism. If we have already acquired so much information about the system that we can construct a reaction coordinate diagram displaying ail intermediates and transition states, we probably have no need to specify the rds. As an example of the experimental detection of the rds we will describe Jencks study of the reaction of hydroxyiamine with acetone. The overall reaction is... [Pg.214]

Consider a reactant molecule in which one atom is replaced by its isotope, for example, protium (H) by deuterium (D) or tritium (T), C by C, etc. The only change that has been made is in the mass of the nucleus, so that to a very good approximation the electronic structures of the two molecules are the same. This means that reaction will take place on the same potential energy surface for both molecules. Nevertheless, isotopic substitution can result in a rate change as a consequence of quantum effects. A rate change resulting from an isotopic substitution is called a kinetic isotope effect. Such effects can provide valuable insights into reaction mechanism. [Pg.292]


See other pages where Example Reaction Mechanism is mentioned: [Pg.477]    [Pg.477]    [Pg.477]    [Pg.477]    [Pg.784]    [Pg.791]    [Pg.1548]    [Pg.362]    [Pg.14]    [Pg.167]    [Pg.207]    [Pg.6]    [Pg.228]    [Pg.482]    [Pg.43]    [Pg.160]    [Pg.207]    [Pg.192]    [Pg.228]    [Pg.554]    [Pg.605]    [Pg.145]    [Pg.423]    [Pg.262]   


SEARCH



Examples reaction

© 2024 chempedia.info