Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Evaporator reactor

Gases and vapors always present or present for prolonged time 0 inside evaporators, reactors, etc. [Pg.223]

Flowsheets for processes are sometimes generated without following the hierarchy of properties described previously. As an example, Siirola [20] proposed a reactive-distiUation solution to make methyl acetate. Unit operations that combine the property differences present abrupt departures from common methodologies. With the advent of various pieces of equipment, such as differential side-stream feed reactors (i.e., semicontinuously fed batch reactors), continuous evaporator-reactors (e.g., wiped-film evaporators), and reactive distillation columns, one can consider these unit operations in the development of conceptual designs. As an example, Doherty and Malone [21] have presented systematic methods for reactive distillation design. [Pg.71]

Mitsui developed an analogue suspension process using their own catalyst system. The process differs from the Spheripol process in a way that a pre-polymerisation takes place in a CSTR in connection with a washing step. Two autoclave reactors are used in series the heat is dissipated to the reactors by evaporating liquid propylene. The suspension is then forwarded to a heated and agitated evaporation reactor in which polypropylene is removed from the polymer and returned to the production process, similar to the Spheripol process. The two processes thus only differ with respect to the reactors and catalysts used, allowing a common consideration of the data for emission and consumption values. [Pg.56]

EVAPORATOR REACTOR COOLER FEEDTANK COLUMN COLUMN... [Pg.861]

These two areas are of paramount importance in practice design of distillation and extraction columns, gas absorbers, evaporators, reactors, etc. is based on the analytical description of phase or chemical reaction equilibrium and, sometimes, of both. And one rarely finds a chemical plant or refinery where several of these units are not present. [Pg.393]

The urea produced is normally either prilled or granulated. In some countries there is a market for Hquid urea—ammonium nitrate solutions (32% N). In this case, a partial-recycle stripping process is the best and cheapest system. The unconverted NH coming from the stripped urea solution and the reactor off-gas is neutralized with nitric acid. The ammonium nitrate solution formed and the urea solution from the stripper bottom are mixed, resulting in a 32—35 wt % solution. This system drastically reduces investment costs as evaporation, finishing (priQ or granulation), and wastewater treatment are not required. [Pg.300]

In the one-stage process (Fig. 2), ethylene, oxygen, and recycle gas are directed to a vertical reactor for contact with the catalyst solution under slight pressure. The water evaporated during the reaction absorbs the heat evolved, and make-up water is fed as necessary to maintain the desired catalyst concentration. The gases are water-scmbbed and the resulting acetaldehyde solution is fed to a distUlation column. The tad-gas from the scmbber is recycled to the reactor. Inert materials are eliminated from the recycle gas in a bleed-stream which flows to an auxdiary reactor for additional ethylene conversion. [Pg.52]

In production, anhydrous formaldehyde is continuously fed to a reactor containing well-agitated inert solvent, especially a hydrocarbon, in which monomer is sparingly soluble. Initiator, especially amine, and chain-transfer agent are also fed to the reactor (5,16,17). The reaction is quite exothermic and polymerisation temperature is maintained below 75°C (typically near 40°C) by evaporation of the solvent. Polymer is not soluble in the solvent and precipitates early in the reaction. [Pg.58]

This procedure may result in a concentration of cumene hydroperoxide of 9—12% in the first reactor, 15—20% in the second, 24—29% in the third, and 32—39% in the fourth. Yields of cumene hydroperoxide may be in the range of 90—95% (18). The total residence time in each reactor is likely to be in the range of 3—6 h. The product is then concentrated by evaporation to 75—85% cumene hydroperoxide. The hydroperoxide is cleaved under acid conditions with agitation in a vessel at 60—100°C. A large number of nonoxidising inorganic acids are usehil for this reaction, eg, sulfur dioxide (19). [Pg.96]

If a linear mbber is used as a feedstock for the mass process (85), the mbber becomes insoluble in the mixture of monomers and SAN polymer which is formed in the reactors, and discrete mbber particles are formed. This is referred to as phase inversion since the continuous phase shifts from mbber to SAN. Grafting of some of the SAN onto the mbber particles occurs as in the emulsion process. Typically, the mass-produced mbber particles are larger (0.5 to 5 llm) than those of emulsion-based ABS (0.1 to 1 llm) and contain much larger internal occlusions of SAN polymer. The reaction recipe can include polymerization initiators, chain-transfer agents, and other additives. Diluents are sometimes used to reduce the viscosity of the monomer and polymer mixture to faciUtate processing at high conversion. The product from the reactor system is devolatilized to remove the unreacted monomers and is then pelletized. Equipment used for devolatilization includes single- and twin-screw extmders, and flash and thin film evaporators. Unreacted monomers are recovered for recycle to the reactors to improve the process yield. [Pg.204]

Fig. 3. Typical nitric acid oxidation process. A, reactor B, optional cleanup reactor C, bleacher D, NO absorber E, concentrating stUl F, crude crystallizer G, centrifuge or filter H, refined crystallizer I, centrifuge or filter , dryer K, purge evaporator L, purge crystallizer M, centrifuge or filter N,... Fig. 3. Typical nitric acid oxidation process. A, reactor B, optional cleanup reactor C, bleacher D, NO absorber E, concentrating stUl F, crude crystallizer G, centrifuge or filter H, refined crystallizer I, centrifuge or filter , dryer K, purge evaporator L, purge crystallizer M, centrifuge or filter N,...
The reactor effluent, containing 1—2% hydrazine, ammonia, sodium chloride, and water, is preheated and sent to the ammonia recovery system, which consists of two columns. In the first column, ammonia goes overhead under pressure and recycles to the anhydrous ammonia storage tank. In the second column, some water and final traces of ammonia are removed overhead. The bottoms from this column, consisting of water, sodium chloride, and hydrazine, are sent to an evaporating crystallizer where sodium chloride (and the slight excess of sodium hydroxide) is removed from the system as a soHd. Vapors from the crystallizer flow to the hydrate column where water is removed overhead. The bottom stream from this column is close to the hydrazine—water azeotrope composition. Standard materials of constmction may be used for handling chlorine, caustic, and sodium hypochlorite. For all surfaces in contact with hydrazine, however, the preferred material of constmction is 304 L stainless steel. [Pg.282]

Molecular beam epitaxy (MBE) is a radically different growth process which utilizes a very high vacuum growth chamber and sources which are evaporated from controlled ovens (15,16). This technique is well suited to growing thin multilayer stmctures as a result of very low growth rates and the abihty to abmpdy switch source materials in the reactor chamber. The former has impeded the use of MBE for the growth of high volume LEDs. [Pg.118]

The UCB collection and refining technology (owned by BP Chemicals (122,153—155)) also depends on partial condensation of maleic anhydride and scmbbing with water to recover the maleic anhydride present in the reaction off-gas. The UCB process departs significantly from the Scientific Design process when the maleic acid is dehydrated to maleic anhydride. In the UCB process the water in the maleic acid solution is evaporated to concentrate the acid solution. The concentrated acid solution and condensed cmde maleic anhydride is converted to maleic anhydride by a thermal process in a specially designed reactor. The resulting cmde maleic anhydride is then purified by distillation. [Pg.457]

Similar to IFP s Dimersol process, the Alphabutol process uses a Ziegler-Natta type soluble catalyst based on a titanium complex, with triethyl aluminum as a co-catalyst. This soluble catalyst system avoids the isomerization of 1-butene to 2-butene and thus eliminates the need for removing the isomers from the 1-butene. The process is composed of four sections reaction, co-catalyst injection, catalyst removal, and distillation. Reaction takes place at 50—55°C and 2.4—2.8 MPa (350—400 psig) for 5—6 h. The catalyst is continuously fed to the reactor ethylene conversion is about 80—85% per pass with a selectivity to 1-butene of 93%. The catalyst is removed by vaporizing Hquid withdrawn from the reactor in two steps classical exchanger and thin-film evaporator. The purity of the butene produced with this technology is 99.90%. IFP has Hcensed this technology in areas where there is no local supply of 1-butene from other sources, such as Saudi Arabia and the Far East. [Pg.440]

The electrolyte feed to the cells is pretreated to remove impurities, and/or additives are added to the feed to improve cell performance (94). The cell hquor leaving the cell is evaporated, crystallised, and centrifuged to remove soHd sodium perchlorate. The clarified cell Hquor can undergo reaction in a double metathesis reactor to produce NH CIO, KCIO or other desired perchlorates. [Pg.68]

Ammonia, hydrochloric acid, and sodium perchlorate are mixed and the reaction mixture crystallised in a vacuum-cooled crystalliser. Ammonium perchlorate crystals are centrifuged, reslurried, recentrifuged, and then dried and blended for shipment. Mother Hquor is evaporated to precipitate sodium chloride and the depleted mother Hquor is recycled to the reactor. The AP product made by this method is 99% pure and meets the specifications for propeUant-grade ammonium perchlorate. The impurities are ammonium chloride, sodium perchlorate, ammonium chlorate, and water insolubles. [Pg.68]

Fig. 9. Schematic of KNO2 from NH2 and KCl A, KCl—HNO2 reactor B, NOCl oxidizer C, acid eliminator D, gas stripper E, water stripper F, H2O—HNO2 fractionator G, evaporator—crystallizer H, centrifuge I, NO—NO2 absorber , NH2 burner K, CI2 fractionator and L, NO2 fractionator. Fig. 9. Schematic of KNO2 from NH2 and KCl A, KCl—HNO2 reactor B, NOCl oxidizer C, acid eliminator D, gas stripper E, water stripper F, H2O—HNO2 fractionator G, evaporator—crystallizer H, centrifuge I, NO—NO2 absorber , NH2 burner K, CI2 fractionator and L, NO2 fractionator.
Manufacture is either by reaction of molten sodium with methyl alcohol or by the reaction of methyl alcohol with sodium amalgam obtained from the electrolysis of brine in a Castner mercury cell (78). Both these methods produce a solution of sodium methylate in methanol and the product is offered in two forms a 30% solution in methanol, and a soHd, which is a dry, free-flowing white powder obtained by evaporating the methanol. The direct production of dry sodium methylate has been carried out by the introduction of methanol vapors to molten sodium in a heavy duty agitating reactor. The sohd is supphed in polyethylene bags contained in airtight dmms filled in a nitrogen atmosphere. [Pg.26]

Processes involving oxygen and nitrogen oxides as catalysts have been operated commercially using either vapor- or Hquid-phase reactors. The vapor-phase reactors require particularly close control because of the wide explosive limit of dimethyl sulfide in oxygen (1—83.5 vol %) plants in operation use Hquid-phase reactions. Figure 2 is a schematic diagram for the Hquid-phase process. The product stream from the reactor is neutralized with aqueous caustic and is vacuum-evaporated, and the DMSO is dried in a distillation column to obtain the product. [Pg.111]


See other pages where Evaporator reactor is mentioned: [Pg.740]    [Pg.303]    [Pg.136]    [Pg.633]    [Pg.740]    [Pg.303]    [Pg.136]    [Pg.633]    [Pg.43]    [Pg.121]    [Pg.249]    [Pg.250]    [Pg.250]    [Pg.263]    [Pg.130]    [Pg.236]    [Pg.241]    [Pg.277]    [Pg.365]    [Pg.455]    [Pg.474]    [Pg.139]    [Pg.225]    [Pg.399]    [Pg.233]    [Pg.284]    [Pg.366]    [Pg.508]    [Pg.480]    [Pg.483]    [Pg.521]    [Pg.52]   
See also in sourсe #XX -- [ Pg.303 ]




SEARCH



Evaporation/condensation reactors

Reactor evaporative

Reactor evaporator concept

© 2024 chempedia.info