Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene vinyl acetate resin

The residence time is typically in the range of 15 - 60 s. The temperature and pressure are a little lower then in a tubular reactor. Pressures are in the range of 130 - 220 MPa, and the temperatures mostly do not exceed 260°C. When ethylene-vinyl acetate resins are produced, single autoclaves are run at temperatures which are 30 - 50°C lower then in the production of homopolyethylene. [Pg.251]

Equistar Chemicals L. D. Polyethylene, hijjr pressure tubular LDPE and EVA resins Ethylene, vinyl acetate Resin production for films, injection molding, adhesives and extrusion coating. VA content up to 40%, capacity 150,000 tpy 5 1992... [Pg.132]

Ethyl cellulose plastics Ethylene-vinyl acetate resins Flourohydrocarbon resins Ion exchange resins... [Pg.452]

Anhydride modified ethylene vinyl acetate resin, adhesion promoter ... [Pg.381]

Ultrathene, Ethylene-vinyl acetate resins and copolymers, Equistar Chemicals... [Pg.942]

The Beijing Organic Chemical Plant was established in 1965, based on technology from Japan. It is now China s largest producer of polyvinyl acetate emulsion, VAE (vinyl acetate-ethylene) emulsion and EVA (ethylene vinyl acetate) resin with assets in 2001 totalling 2 billion yuan (US 241.6 million). The company employs more than 1500. [Pg.92]

Figure 3 shows the production of acetaldehyde in the years 1969 through 1987 as well as an estimate of 1989—1995 production. The year 1969 was a peak year for acetaldehyde with a reported production of 748,000 t. Acetaldehyde production is linked with the demand for acetic acid, acetic anhydride, cellulose acetate, vinyl acetate resins, acetate esters, pentaerythritol, synthetic pyridine derivatives, terephthaHc acid, and peracetic acid. In 1976 acetic acid production represented 60% of the acetaldehyde demand. That demand has diminished as a result of the rising cost of ethylene as feedstock and methanol carbonylation as the preferred route to acetic acid (qv). [Pg.53]

This type of adhesive is generally useful in the temperature range where the material is either leathery or mbbery, ie, between the glass-transition temperature and the melt temperature. Hot-melt adhesives are based on thermoplastic polymers that may be compounded or uncompounded ethylene—vinyl acetate copolymers, paraffin waxes, polypropylene, phenoxy resins, styrene—butadiene copolymers, ethylene—ethyl acrylate copolymers, and low, and low density polypropylene are used in the compounded state polyesters, polyamides, and polyurethanes are used in the mosdy uncompounded state. [Pg.235]

Pentaerythritol in rosin ester form is used in hot-melt adhesive formulations, especially ethylene—vinyl acetate (EVA) copolymers, as a tackifier. Polyethers of pentaerythritol or trim ethyl ol eth an e are also used in EVA and polyurethane adhesives, which exhibit excellent bond strength and water resistance. The adhesives maybe available as EVA melts or dispersions (90,91) or as thixotropic, one-package, curable polyurethanes (92). Pentaerythritol spko ortho esters have been used in epoxy resin adhesives (93). The EVA adhesives are especially suitable for cellulose (paper, etc) bonding. [Pg.466]

A series of compounded flame retardants, based on finely divided insoluble ammonium polyphosphate together with char-forming nitrogenous resins, has been developed for thermoplastics (52—58). These compounds are particularly useful as iatumescent flame-retardant additives for polyolefins, ethylene—vinyl acetate, and urethane elastomers (qv). The char-forming resin can be, for example, an ethyleneurea—formaldehyde condensation polymer, a hydroxyethylisocyanurate, or a piperazine—triazine resin. [Pg.476]

Hydrocarbon resins (qv) are prepared by copolymerization of vinyltoluene, styrene, and a-methylstyrene in the presence of a Eriedel-Crafts catalyst (AlCl ). These resins are compatible with wax and ethylene—vinyl acetate copolymer (197). [Pg.563]

In order to increase the solubiUty parameter of CPD-based resins, vinyl aromatic compounds, as well as other polar monomers, have been copolymerized with CPD. Indene and styrene are two common aromatic streams used to modify cyclodiene-based resins. They may be used as pure monomers or contained in aromatic steam cracked petroleum fractions. Addition of indene at the expense of DCPD in a thermal polymerization has been found to lower the yield and softening point of the resin (55). CompatibiUty of a resin with ethylene—vinyl acetate (EVA) copolymers, which are used in hot melt adhesive appHcations, may be improved by the copolymerization of aromatic monomers with CPD. As with other thermally polymerized CPD-based resins, aromatic modified thermal resins may be hydrogenated. [Pg.355]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Organic peroxides are used in the polymer industry as thermal sources of free radicals. They are used primarily to initiate the polymerisation and copolymerisation of vinyl and diene monomers, eg, ethylene, vinyl chloride, styrene, acryUc acid and esters, methacrylic acid and esters, vinyl acetate, acrylonitrile, and butadiene (see Initiators). They ate also used to cute or cross-link resins, eg, unsaturated polyester—styrene blends, thermoplastics such as polyethylene, elastomers such as ethylene—propylene copolymers and terpolymers and ethylene—vinyl acetate copolymer, and mbbets such as siUcone mbbet and styrene-butadiene mbbet. [Pg.135]

Rosin, modified rosins, and derivatives are used in hot-melt adhesives. They are based primarily on ethylene—vinyl acetate copolymers. The rosin derivative is used in approximately a 1 1 1 concentration with the polymer and a wax. The resin provides specific adhesion to the substrates and reduces the viscosity at elevated temperatures, allowing the adhesive to be appHed as a molten material. [Pg.140]

Materials are also blended with VDC copolymers to improve toughness (211—214). VinyHdene chloride copolymer blended with ethylene—vinyl acetate copolymers improves toughness and lowers heat-seal temperatures (215,216). Adhesion of a VDC copolymer coating to polyester can be achieved by blending the copolymer with a linear polyester resin (217). [Pg.443]

Siding. The resin most used for siding is poly(vinyl chloride) homopolymer, compounded with modifiers, stabilizers, and pigments. Modifiers are most often acryhc esters, followed by chlorinated polyethylene or ethylene—vinyl acetate, used at 6—8 phr (parts per hundred resin). The modifier increases the impact strength of the rigid PVC. [Pg.334]

Polymers ndResins. / fZ-Butyl peroxyneopentanoate and other peroxyesters of neopentanoic acid can be used as free-radical initiators for the polymeri2ation of vinyl chloride [75-01-4] (38) or of ethylene [74-85-1]. These peresters have also been used in the preparation of ethylene—vinyl acetate copolymers [24937-78-8] (39), modified polyester granules (40), graft polymers of arninoalkyl acrylates with vinyl chloride resins (41), and copolymers of A/-vinyl-pyrrohdinone [88-12-0] and vinyl acetate [108-05-4] (42). They can also be used as curing agents for unsaturated polyesters (43). [Pg.104]

Poly(ethylene-i (9-vinyl alcohol) is made by saponification of ethylene—vinyl acetate copolymers. The properties of these materials depend on the amount of vinyl alcohol present in the copolymer. High vinyl alcohol content results in more hydrophilic materials possessing higher densities, stiffness, and moduh. They are used commercially as barrier resins for packaging. Important producers include Du Pont and EVALCA (74) (see Barrier polymers). [Pg.185]

NR, styrene-butadiene mbber (SBR), polybutadiene rubber, nitrile mbber, acrylic copolymer, ethylene-vinyl acetate (EVA) copolymer, and A-B-A type block copolymer with conjugated dienes have been used to prepare pressure-sensitive adhesives by EB radiation [116-126]. It is not necessary to heat up the sample to join the elastomeric joints. This has only been possible due to cross-linking procedure by EB irradiation [127]. Polyfunctional acrylates, tackifier resin, and other additives have also been used to improve adhesive properties. Sasaki et al. [128] have studied the EB radiation-curable pressure-sensitive adhesives from dimer acid-based polyester urethane diacrylate with various methacrylate monomers. Acrylamide has been polymerized in the intercalation space of montmorillonite using an EB. The polymerization condition has been studied using a statistical method. The product shows a good water adsorption and retention capacity [129]. [Pg.866]

The most common copolymer of this type is ethylene-vinyl acetate, which we normally refer to as EVA. This variety of polyethylene is illustrated in Fig. 18.2 e), in which the ester branches are indicated by the symbol VA This family of copolymers is commercially available containing vinyl acetate concentrations of up to approximately 25 mole %. In addition to the randomly distributed ester branches, these resins also contain the short and long chain branches that are characteristic of low density polyethylene. [Pg.287]

Ethyleneurea resins, 2 639 Ethylene-vinyl acetate (EVA) copolymers (EVAc), 7 639 9 57-58 25 582 Ethylene-vinyl acetate copolymer food packaging, 18 44... [Pg.336]

Latexes are usually copolymer systems of two or more monomers, and their total solids content, including polymers, emulsifiers, stabilizers etc. is 40-50% by mass. Most commercially available polymer latexes are based on elastomeric and thermoplastic polymers which form continuous polymer films when dried [88]. The major types of latexes include styrene-butadiene rubber (SBR), ethylene vinyl acetate (EVA), polyacrylic ester (PAE) and epoxy resin (EP) which are available both as emulsions and redispersible powders. They are widely used for bridge deck overlays and patching, as adhesives, and integral waterproofers. A brief description of the main types in current use is as follows [87]. [Pg.346]


See other pages where Ethylene vinyl acetate resin is mentioned: [Pg.470]    [Pg.470]    [Pg.152]    [Pg.8879]    [Pg.409]    [Pg.414]    [Pg.414]    [Pg.3]    [Pg.470]    [Pg.470]    [Pg.152]    [Pg.8879]    [Pg.409]    [Pg.414]    [Pg.414]    [Pg.3]    [Pg.76]    [Pg.355]    [Pg.358]    [Pg.404]    [Pg.489]    [Pg.136]    [Pg.139]    [Pg.134]    [Pg.717]    [Pg.310]    [Pg.531]   
See also in sourсe #XX -- [ Pg.414 , Pg.415 ]

See also in sourсe #XX -- [ Pg.414 , Pg.415 ]




SEARCH



Acetal resins

Ethylene acetals

Ethylene-vinyl acetate

Vinyl acetate resins

Vinyl ethylene

Vinyl resins

© 2024 chempedia.info