Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene glycol polymerization

Terephthalic acid and ethylene glycol polymerize to form the condensation copolymer polyethylene terephthalate. [Pg.418]

Colourless liquid b.p, 28" C. Prepared from (C1CH2CH2)20 with fused KOH in a NHj atmosphere or in ethylene glycol at over 200 C. Readily oxidized by air. slowly polymerizes to a jelly. [Pg.145]

Condensation polymerization differs from addition polymerization in that the polymer is formed by reaction of monomers, each step in the process resulting in the elimination of some easily removed molecule (often water). E.g. the polyester polyethylene terephthalate (Terylene) is formed by the condensation polymerization (polycondensation) of ethylene glycol with terephthalic acid ... [Pg.321]

ETHYLENE We discussed ethylene production in an earlier boxed essay (Section 5 1) where it was pointed out that the output of the U S petrochemi cal industry exceeds 5 x 10 ° Ib/year Approximately 90% of this material is used for the preparation of four compounds (polyethylene ethylene oxide vinyl chloride and styrene) with polymerization to poly ethylene accounting for half the total Both vinyl chloride and styrene are polymerized to give poly(vinyl chloride) and polystyrene respectively (see Table 6 5) Ethylene oxide is a starting material for the preparation of ethylene glycol for use as an an tifreeze in automobile radiators and in the produc tion of polyester fibers (see the boxed essay Condensation Polymers Polyamides and Polyesters in Chapter 20)... [Pg.269]

The ethylene glycol liberated by reaction (5.L) is removed by lowering the pressure or purging with an inert gas. Because the ethylene glycol produced by reaction (5.L) is removed, proper stoichiometry is assured by proceeding via the intermediate, bis(2-hydroxyethyl) terephthalate otherwise the excess glycol used initially would have a deleterious effect on the degree of polymerization. Poly(ethylene terephthalate) is more familiar by some of its trade names Mylar as a film and Dacron, Kodel, or Terylene as fibers it is also known by the acronym PET. [Pg.302]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

Unsaturated polyester resins prepared by condensation polymerization constitute the largest industrial use for maleic anhydride. Typically, maleic anhydride is esterified with ethylene glycol [107-21-1] and a vinyl monomer or styrene is added along with an initiator such as a peroxide to produce a three-dimensional macromolecule with rigidity, insolubiUty, and mechanical strength. [Pg.453]

The ester linkage in the repeating unit characterizes polyesters. R and R represent portions of the monomer molecule that do not participate in the polymerization. They may vary widely, giving rise to many different polyesters. Poly(ethylene terephthalate) (PET), made from ethylene glycol... [Pg.429]

Polyethylene terephthalate [25038-59-9] (8) is a polyester produced by the condensation polymerization of dimethyl terephthalate and ethylene glycol. Polyethylene terephthalate sutures are available white (undyed), or dyed green with D C Green No. 6, or blue with D C Blue No. 6. These may be coated with polybutylene adipate (polybutilate), polyydimethylsiloxane, or polytetrafiuoroethylene [9002-84-0]. The sutures are distributed under the trade names Ethibond Exel, Mersdene, Polydek, Silky II Polydek, Surgidac, Tevdek II, Polyester, and Tl.Cron. [Pg.269]

Glycol Titanates. Primary diols (HOGOH), such as ethylene glycol and 1,3-propanediol, react by alkoxide interchange at both ends, yielding insoluble, white soflds that are polymeric in nature (18,61—63) ... [Pg.144]

Third Monomers. In order to achieve certain property improvements, nitrile mbber producers add a third monomer to the emulsion polymerization process. When methacrylic acid is added to the polymer stmcture, a carboxylated nitrile mbber with greatly enhanced abrasion properties is achieved (9). Carboxylated nitrile mbber carries the ASTM designation of XNBR. Cross-linking monomers, eg, divinylbenzene or ethylene glycol dimethacrylate, produce precross-linked mbbers with low nerve and die swell. To avoid extraction losses of antioxidant as a result of contact with fluids duriag service, grades of NBR are available that have utilized a special third monomer that contains an antioxidant moiety (10). FiaaHy, terpolymers prepared from 1,3-butadiene, acrylonitrile, and isoprene are also commercially available. [Pg.522]

Low molecular weight PET and PBT resins are made by melt processes. For higher molecular weight resins, both melt processes or soHd-state polymerization are used. Although terephthaHc acid can be directly esterified, the most common process involves transesterification of dimethyl terephthalate with ethylene glycol or 1,4-butanediol in the presence of trace amounts of metal ion catalysts (67,68). [Pg.267]

With Water. Wurtz was the first to obtain ethylene glycol by heating ethylene oxide and water in a sealed tube (1). Later, it was noted that by-products, namely diethjlene and triethylene glycol, were also formed in this reaction (50). This was the first synthesis of polymeric compounds of well-defined stmcture. Hydration is slow at ambient temperatures and neutral conditions, but is much faster with either acid or base catalysis (Table 8). The type of anion in the catalyzing acid is relatively unimportant (58) (see Glycols). [Pg.453]

Commercial narrow standards [such as poly(ethylene glycol) (pEG), polystyrene sulfonate, pAA, poly w-vinyl pyrrolidinone, dextrans] are available from American Polymer Standards Corporation, Polymer Laboratories, Polymer Standards Service USA, Toyo Soda, and others. While these standards are often not as narrow as pSty or pMMA that has been anionically polymerized, they are acceptable for narrow standard calibrations. [Pg.541]

Hazer [20,25] reported on the reaction of a po]y(eth-ylene g]ycol)-based azoester with methacryloyl chloride in the presence of (CH3CH2)3N. In this reaction double bonds were attached to the chain ends of the poly(ester) thus obtaining a macroinimer. Being used for the thermal polymerization of styrene, the material formed an insoluble gel [20]. Probably, both the C=C double bonds and the azo bonds reacted in the course of the thermal treatment. The macroninimer in a later work [25] was used for thermally polymerizing poly(butadiene) thus leading to poly(ethylene glycol-/ -butadiene) block copolymers. [Pg.738]

Polyaddition reactions based on isocyanate-terminated poly(ethylene glycol)s and subsequent block copolymerization with styrene monomer were utilized for the impregnation of wood [54]. Hazer [55] prepared block copolymers containing poly(ethylene adipate) and po-ly(peroxy carbamate) by an addition of the respective isocyanate-terminated prepolymers to polyazoesters. By both bulk and solution polymerization and subsequent thermal polymerization in the presence of a vinyl monomer, multiblock copolymers could be formed. [Pg.741]

The formation of a polymeric initiator containing azo and peroxy groups has been reported by Hazer et al. [80]. In this paper, poly(ethylene glycol) (M 4 x 10. .. 3 X 10 ) was condensed with AIBN vide ante)... [Pg.750]

Scheme 3b). It is instructive at this point to reiterate that the furan nucleus can be used in synthesis as a progenitor for a 1,4-dicarbonyl. Whereas the action of aqueous acid on a furan is known to provide direct access to a 1,4-dicarbonyl compound, exposure of a furan to an alcohol and an acid catalyst should result in the formation of a 1,4-diketal. Indeed, when a solution of intermediate 15 in benzene is treated with excess ethylene glycol, a catalytic amount of / ara-toluenesulfonic acid, and a trace of hydroquinone at reflux, bisethylene ketal 14 is formed in a yield of 71 %. The azeotropic removal of water provides a driving force for the ketalization reaction, and the presence of a trace of hydroquinone suppresses the formation of polymeric material. Through a Finkelstein reaction,14 the action of sodium iodide on primary bromide 14 results in the formation of primary iodide 23, a substance which is then treated, in crude form, with triphenylphosphine to give crystalline phosphonium iodide 24 in a yield of 93 % from 14. Scheme 3b). It is instructive at this point to reiterate that the furan nucleus can be used in synthesis as a progenitor for a 1,4-dicarbonyl. Whereas the action of aqueous acid on a furan is known to provide direct access to a 1,4-dicarbonyl compound, exposure of a furan to an alcohol and an acid catalyst should result in the formation of a 1,4-diketal. Indeed, when a solution of intermediate 15 in benzene is treated with excess ethylene glycol, a catalytic amount of / ara-toluenesulfonic acid, and a trace of hydroquinone at reflux, bisethylene ketal 14 is formed in a yield of 71 %. The azeotropic removal of water provides a driving force for the ketalization reaction, and the presence of a trace of hydroquinone suppresses the formation of polymeric material. Through a Finkelstein reaction,14 the action of sodium iodide on primary bromide 14 results in the formation of primary iodide 23, a substance which is then treated, in crude form, with triphenylphosphine to give crystalline phosphonium iodide 24 in a yield of 93 % from 14.
Paraplex. A trademark for a group of alkyd type polymeric materials known as polyester resins. These resins are primarily long chain polybasic acids esterified with polyhydric alcohols such as glycol sebacate, glycerol, or ethylene glycol. Some are oil-modified while others are unmodified polyesters... [Pg.489]


See other pages where Ethylene glycol polymerization is mentioned: [Pg.418]    [Pg.7178]    [Pg.418]    [Pg.7178]    [Pg.168]    [Pg.193]    [Pg.144]    [Pg.209]    [Pg.230]    [Pg.327]    [Pg.333]    [Pg.63]    [Pg.333]    [Pg.293]    [Pg.296]    [Pg.444]    [Pg.88]    [Pg.229]    [Pg.181]    [Pg.396]    [Pg.839]    [Pg.277]    [Pg.9]    [Pg.489]    [Pg.740]    [Pg.740]    [Pg.747]    [Pg.748]    [Pg.610]    [Pg.338]    [Pg.819]    [Pg.887]   


SEARCH



Ethylene polymerization

© 2024 chempedia.info