Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene glycol acidity

Ethylene glycol, benzoic acid Ethylene glycol, acid... [Pg.1276]

Derived from an aldehyde or ketone and an alcohol using an acid catalyst. Ethylene glycol or 1,3-dihydroxypropane are frequently used to give 5-or 6-member cyclic products. [Pg.10]

Condensation polymerization differs from addition polymerization in that the polymer is formed by reaction of monomers, each step in the process resulting in the elimination of some easily removed molecule (often water). E.g. the polyester polyethylene terephthalate (Terylene) is formed by the condensation polymerization (polycondensation) of ethylene glycol with terephthalic acid ... [Pg.321]

If the original ester is a fat or oil and produces an odour of acrolein when heated, it may be a glyceride. Esters of ethylene glycol and of glycol with simple fatty acids are viscous and of high b.p. They are hydrolysed (method I) and the ethyl alcohol distilled ofl. The residue is diluted (a soap may be formed) and acidified with hydrochloric acid (Congo red paper). The acid is filtered or... [Pg.391]

Polymerisation of a diol with a dicarboxybe acid is exemplified by the production of a polyester from ethylene glycol and terephthabc acid either by direct esterification or by a catalysed ester-interchange reaction. The resulting polyester (Terylene) is used for the manufacture of fibres and fabrics, and has high tensile strength and resibency its structure is probably ... [Pg.1019]

Poly(ethylene Terephthalate). Poly(ethylene terephthalate) is prepared by the reaction of either terephthalic acid or dimethyl terephthalate with ethylene glycol, and its repeating unit has the general structure. [Pg.1019]

Acetic acid Chromium(VI) oxide, chlorosulfonic acid, ethylene glycol, ethyleneimine, hydroxyl compounds, nitric acid, oleum, perchloric acid, peroxides, permanganates, potasssium r rf-butoxide, PCI3... [Pg.1207]

Sodium peroxide Glacial acetic acid, acetic anhydride, aniline, benzene, benzaldehyde, carbon di-sulflde, diethyl ether, ethanol or methanol, ethylene glycol, ethyl acetate, furfural, glycerol, metals, methyl acetate, organic matter... [Pg.1212]

Those polymers which are the condensation product of two different monomers are named by applying the preceding rules to the repeat unit. For example, the polyester formed by the condensation of ethylene glycol and terephthalic acid is called poly(oxyethylene oxyterphthaloyl) according to the lUPAC system, as well as poly (ethylene terephthalate) or polyethylene terephthalate. [Pg.22]

Ester interchange reactions are valuable, since, say, methyl esters of di-carboxylic acids are often more soluble and easier to purify than the diacid itself. The methanol by-product is easily removed by evaporation. Poly (ethylene terephthalate) is an example of a polymer prepared by double application of reaction 4 in Table 5.3. The first stage of the reaction is conducted at temperatures below 200°C and involves the interchange of dimethyl terephthalate with ethylene glycol... [Pg.300]

To some extent each of these objections is met by the presence of either chemical or crystallite crosslinking in the polymer. Another approach which complements the former is to incorporate rings into the backbone of the chemical chain. As an example, contrast the polyesters formed between ethylene glycol and either suberic or terephthaUc acid. Structures [V] and [VI], respectively, indicate the repeat units in these polymers ... [Pg.334]

Poly(ethylene glycol) sesquiester of tall oil acids[6179l-30-8]... [Pg.783]

Hydrolysis yielding terephthaHc acid and ethylene glycol is a third process (33). High temperatures and pressures are required for this currently noncommercial process. The purification of the terephthaHc acid is costly and is the reason the hydrolysis process is no longer commercial. [Pg.230]

Reactions of the Methyl Groups. These reactions include oxidation, polycondensation, and ammoxidation. PX can be oxidized to both terephthahc acid and dimethyl terephthalate, which ate then condensed with ethylene glycol to form polyesters. Oxidation of OX yields phthaUc anhydride, which is used in the production of esters. These ate used as plasticizers for synthetic polymers. MX is oxidized to isophthaUc acid, which is also converted to esters and eventually used in plasticizers and resins (see Phthalic acids and otherbenzenepolycarboxylic acids). [Pg.413]

Reactions with Alcohols, Mercaptans, and Phenols. Alcohols add readily to acetaldehyde in the presence of trace quantities of mineral acid to form acetals eg, ethanol and acetaldehyde form diethyl acetal [105-57-7] (65). Similarly, cycHc acetals are formed by reactions with glycols and other polyhydroxy compounds eg, ethylene glycol [107-21-1] and acetaldehyde give 2-methyl-1,3-dioxolane [497-26-7] (66) ... [Pg.50]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

Nitroglycol maybe made by nitration of ethylene glycol [107-21-1] with mixed acid with a yield of ca 93%. The demand for both NG and nitroglycol has been gready decreased (115,116). [Pg.13]

However, because of the low melting poiats and poor hydrolytic stabiUty of polyesters from available iatermediates, Carothers shifted his attention to linear ahphatic polyamides and created nylon as the first commercial synthetic fiber. It was nearly 10 years before. R. Whinfield and J. T. Dickson were to discover the merits of poly(ethylene terephthalate) [25038-59-9] (PET) made from aromatic terephthaUc acid [100-21-0] (TA) and ethylene glycol [107-21-1] (2G). [Pg.325]

When PET is extracted with water no detectable quantities of ethylene glycol or terephthaUc acid can be found, even at elevated extraction temperatures (110). Extractable materials are generally short-chained polyesters and aldehydes (110). Aldehydes occur naturally iu foods such as fmits and are produced metabohcaHy iu the body. Animal feeding studies with extractable materials show no adverse health effects. [Pg.333]

EG may also be pioduced via glycolic acid using catalysts containing strong acids (66), cobalt carbonyl (67—69), rhodium oxide (68), or HE solvent (70,71) (see Glycols, ETHYLENE glycol). [Pg.493]

The largest commercial use of ethylene glycol is its reaction with dicarboxyUc acids to form linear polyesters. Poly(ethylene terephthalate)... [Pg.357]

Ketones and aldehydes react with ethylene glycol under acidic conditions to form 1,3-dioxolanes (cychc ketals and acetals) (eq. 7). [Pg.357]


See other pages where Ethylene glycol acidity is mentioned: [Pg.652]    [Pg.861]    [Pg.652]    [Pg.661]    [Pg.860]    [Pg.652]    [Pg.861]    [Pg.652]    [Pg.661]    [Pg.860]    [Pg.94]    [Pg.142]    [Pg.165]    [Pg.167]    [Pg.168]    [Pg.168]    [Pg.168]    [Pg.1045]    [Pg.55]    [Pg.681]    [Pg.746]    [Pg.748]    [Pg.869]    [Pg.251]    [Pg.67]    [Pg.239]    [Pg.11]    [Pg.166]    [Pg.308]    [Pg.281]    [Pg.357]   
See also in sourсe #XX -- [ Pg.544 ]




SEARCH



Adipic Acid-Ethylene Glycol Polyester Polyol

Adipic acid-ethylene glycol

Citric acid-ethylene glycol precursor

Ethylene acidity

Ethylene acids

Ethylene glycol 2-Ethylhexanoic acid

Ethylene glycol dicarboxylic acid, polyesters

Ethylene glycol dimethacrylic acid

Ethylene glycol polymer with terephthalic acid

Ethylene glycol reaction with terephthalic acid

Ethylene glycol tetraacetic acid

Ethylene glycol-p-Toluenesulfonic acid

Glycolic acid / Glycolate

Glycolic acid Glycols

Glycollic acid

Methacrylic acid-ethylene glycol

Methacrylic acid-ethylene glycol copolymers

Methacrylic acid-ethylene glycol dimethacrylate

Methacrylic acid-ethylene glycol dimethacrylate MIPs

Methacrylic acid-ethylene glycol templates

Oxalic acid, ethylene glycol metabolized

Poly ethylene glycol acid-sensitive

Poly(methacrylic acid-co-ethylene glycol

Sulfuric acid ethylene glycol production

© 2024 chempedia.info