Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene dominance

Then a new technique was developed - known as catalytic cracking - and before long there was an abundance of the petrochemicals needed for elastomers, plastics, and synthetic fibers. Ethylene dominates all the other petroleum building blocks and one of its first uses was as ethylene glycol, the antifreeze used in cars. Another automotive-associated use was tetra-ethyl lead (TEL), a gasoline additive to reduce engine knock and increase fuel efficiency. [Pg.545]

In an ambitious study, the AIMS method was used to calculate the absorption and resonance Raman spectra of ethylene [221]. In this, sets starting with 10 functions were calculated. To cope with the huge resources required for these calculations the code was parallelized. The spectra, obtained from the autocorrelation function, compare well with the experimental ones. It was also found that the non-adiabatic processes described above do not influence the spectra, as their profiles are formed in the time before the packet reaches the intersection, that is, the observed dynamic is dominated by the torsional motion. Calculations using the Condon approximation were also compared to calculations implicitly including the transition dipole, and little difference was seen. [Pg.309]

VVuv (ffl). Within the series, one tenn dominates, for example, the n 2 term for ethylene. Ethylene strongly resists torsional deformation to any angle other than 0 and 7t (180") (Fig. 4-10). [Pg.120]

Before dehydrogenation of ethane became the dominant method ethylene was pre pared by heating ethyl alcohol with sulfunc acid... [Pg.203]

Olefins are produced primarily by thermal cracking of a hydrocarbon feedstock which takes place at low residence time in the presence of steam in the tubes of a furnace. In the United States, natural gas Hquids derived from natural gas processing, primarily ethane [74-84-0] and propane [74-98-6] have been the dominant feedstock for olefins plants, accounting for about 50 to 70% of ethylene production. Most of the remainder has been based on cracking naphtha or gas oil hydrocarbon streams which are derived from cmde oil. Naphtha is a hydrocarbon fraction boiling between 40 and 170°C, whereas the gas oil fraction bods between about 310 and 490°C. These feedstocks, which have been used primarily by producers with refinery affiliations, account for most of the remainder of olefins production. In addition a substantial amount of propylene and a small amount of ethylene ate recovered from waste gases produced in petroleum refineries. [Pg.171]

Table 6 shows the sales estimates for principal film and sheet products for the year 1990 (14). Low density polyethylene films dominate the market in volume, followed by polystyrene and the vinyls. High density polyethylene, poly(ethylene terephthalate), and polypropylene are close in market share and complete the primary products. A number of specialty resins are used to produce 25,000—100,000 t of film or sheet, and then there are a large number of high priced, high performance materials that serve niche markets. The original clear film product, ceUophane, has faUen to about 25,000 t in the United States, with only one domestic producer. Table 7 Hsts some of the principal film and sheet material manufacturers in the United States. Table 6 shows the sales estimates for principal film and sheet products for the year 1990 (14). Low density polyethylene films dominate the market in volume, followed by polystyrene and the vinyls. High density polyethylene, poly(ethylene terephthalate), and polypropylene are close in market share and complete the primary products. A number of specialty resins are used to produce 25,000—100,000 t of film or sheet, and then there are a large number of high priced, high performance materials that serve niche markets. The original clear film product, ceUophane, has faUen to about 25,000 t in the United States, with only one domestic producer. Table 7 Hsts some of the principal film and sheet material manufacturers in the United States.
Nonreactive additive flame retardants dominate the flexible urethane foam field. However, auto seating appHcations exist, particularly in Europe, for a reactive polyol for flexible foams, Hoechst-Celanese ExoHt 413, a polyol mixture containing 13% P and 19.5% Cl. The patent beHeved to describe it (114) shows a reaction of ethylene oxide and a prereacted product of tris(2-chloroethyl) phosphate and polyphosphoric acid. An advantage of the reactive flame retardant is avoidance of windshield fogging, which can be caused by vapors from the more volatile additive flame retardants. [Pg.479]

Polyester Polyols. Initially polyester polyols were the preferred raw materials for polyurethanes, but in the 1990s the less expensive polyether polyols dominate the polyurethane market. Inexpensive aromatic polyester polyols have been introduced for rigid foam appHcations. These are obtained from residues of terephthaHc acid production or by transesterification of dimethyl terephthalate (DMT) or poly(ethylene terephthalate) (PET) scrap with glycols. [Pg.347]

Ethylene oxide (qv) was once produced by the chlorohydrin process, but this process was slowly abandoned starting in 1937 when Union Carbide Corp. developed and commercialized the silver-catalyzed air oxidation of ethylene process patented in 1931 (67). Union Carbide Corp. is stiU. the world s largest ethylene oxide producer, but most other manufacturers Hcense either the Shell or Scientific Design process. Shell has the dominant patent position in ethylene oxide catalysts, which is the result of the development of highly effective methods of silver deposition on alumina (29), and the discovery of the importance of estabUshing precise parts per million levels of the higher alkaU metal elements on the catalyst surface (68). The most recent patents describe the addition of trace amounts of rhenium and various Group (VI) elements (69). [Pg.202]

Three reactions dominate ethylene oxide production ... [Pg.202]

Oxychlorination of Ethylene or Dichloroethane. Ethylene or dichloroethane can be chlorinated to a mixture of tetrachoroethylene and trichloroethylene in the presence of oxygen and catalysts. The reaction is carried out in a fluidized-bed reactor at 425°C and 138—207 kPa (20—30 psi). The most common catalysts ate mixtures of potassium and cupric chlorides. Conversion to chlotocatbons ranges from 85—90%, with 10—15% lost as carbon monoxide and carbon dioxide (24). Temperature control is critical. Below 425°C, tetrachloroethane becomes the dominant product, 57.3 wt % of cmde product at 330°C (30). Above 480°C, excessive burning and decomposition reactions occur. Product ratios can be controlled but less readily than in the chlorination process. Reaction vessels must be constmcted of corrosion-resistant alloys. [Pg.24]

Tetrachloroethylene [127-18-4] perchloroethylene, CCl2=CCl2, is commonly referred to as "perc" and sold under a variety of trade names. It is the most stable of the chloriaated ethylenes and ethanes, having no flash poiat and requiring only minor amounts of stabilizers. These two properties combiaed with its excellent solvent properties account for its dominant use ia the dry-cleaning iadustry as well as its appHcation ia metal cleaning and vapor degreasiag. [Pg.27]

Ethylene oxide has been produced commercially by two basic routes the ethylene chlorohydrin and direct oxidation processes. The chlorohydrin process was first iatroduced dufing World War I ia Germany by Badische Anilin-und Soda-Eabfik (BASE) and others (95). The process iavolves the reaction of ethylene with hypochlorous acid followed by dehydrochlofination of the resulting chlorohydrin with lime to produce ethylene oxide and calcium chloride. Union Carbide Corp. was the first to commercialize this process ia the United States ia 1925. The chlorohydrin process is not economically competitive, and was quickly replaced by the direct oxidation process as the dominant technology. At the present time, all the ethylene oxide production ia the world is achieved by the direct oxidation process. [Pg.454]

Ethylene oxide has been shown to produce mutagenic and cytogenic effects in a variety of test systems (226). An increased frequency of chromosomal aberrations in peripheral lymphocytes of monkey exposed to ethylene oxide for 104 weeks has been reported (240). In mice, it is an effective inducer of chromosome breaks leading to dominant-lethal mutations. In addition, ethylene oxide has been shown to induce heritable effects in the heritable translocation test conducted in mice exposed to ethylene oxide by inhalation (241,242). In this study, male mice were exposed to ethylene oxide ranging from 165 to 300 ppm for 6 h per day 5 or 7 days/week for 8.5 weeks. Ethylene oxide has also been shown to bind to proteins (243) as well as to DNA (244). Several studies on ethylene oxide-exposed workers have demonstrated an increased incidence of chromosomal aberrations and sister chromatid exchanges the relevance of such effects to human health evaluation is currendy uncertain. [Pg.464]

One unfortunate characteristic property of polypropylene is the dominating transition point which occurs at about 0°C with the result that the polymer becomes brittle as this temperature is approached. Even at room temperature the impact strength of some grades leaves something to be desired. Products of improved strength and lower brittle points may be obtained by block copolymerisation of propylene with small amounts (4-15%) of ethylene. Such materials are widely used (known variously as polyallomers or just as propylene copolymers) and are often preferred to the homopolymer in injection moulding and bottle blowing applications. [Pg.253]

Among the different pressure sensitive adhesives, acrylates are unique because they are one of the few materials that can be synthesized to be inherently tacky. Indeed, polyvinylethers, some amorphous polyolefins, and some ethylene-vinyl acetate copolymers are the only other polymers that share this unique property. Because of the access to a wide range of commercial monomers, their relatively low cost, and their ease of polymerization, acrylates have become the dominant single component pressure sensitive adhesive materials used in the industry. Other PSAs, such as those based on natural rubber or synthetic block copolymers with rubbery midblock require compounding of the elastomer with low molecular weight additives such as tackifiers, oils, and/or plasticizers. The absence of these low molecular weight additives can have some desirable advantages, such as ... [Pg.485]

Finally, we want to describe two examples of those isolated polymer chains in a sea of solvent molecules. Polymer chains relax considerably faster in a low-molecular-weight solvent than in melts or glasses. Yet it is still almost impossible to study the conformational relaxation of a polymer chain in solvent using atomistic simulations. However, in many cases it is not the polymer dynamics that is of interest but the structure and dynamics of the solvent around the chain. Often, the first and maybe second solvation shells dominate the solvation. Two recent examples of aqueous and non-aqueous polymer solutions should illustrate this poly(ethylene oxide) (PEO) [31]... [Pg.492]

To examine the situation under simpler conditions, runs with xenon as sensitizer were made using low pressures of ethylene and NO. Two spectra are shown in Figure 16. The simplest spectrum is obtained with 25% NO. C4H8NO + and C2H5(NO)2+ dominate the spectrum. [Pg.247]

FIGURE 6.3 The crystallinity and composition continuum for ethylene- and propylene-dominated polyolefins. Note the dispersion for the propylene-dominated polyolefins due to much-greater prevalence of blends and the presence of tacticity derived changes in crystallinity. [Pg.168]


See other pages where Ethylene dominance is mentioned: [Pg.225]    [Pg.225]    [Pg.276]    [Pg.181]    [Pg.195]    [Pg.186]    [Pg.171]    [Pg.27]    [Pg.361]    [Pg.245]    [Pg.402]    [Pg.459]    [Pg.332]    [Pg.505]    [Pg.411]    [Pg.459]    [Pg.464]    [Pg.133]    [Pg.417]    [Pg.722]    [Pg.799]    [Pg.323]    [Pg.52]    [Pg.425]    [Pg.169]    [Pg.470]    [Pg.470]    [Pg.204]    [Pg.212]    [Pg.229]    [Pg.89]    [Pg.84]   


SEARCH



Domin

Dominance

Dominant

Dominate

Domination

© 2024 chempedia.info