Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene amine-neutralized

Chem. Descrip. Amine neutralized butoxyethyl acid phosphate in ethylene glycol... [Pg.919]

Within the scope of the original definition, a very wide variety of ionomers can be obtained by the introduction of acidic groups at molar concentrations below 10% into the important addition polymer families, followed by partial neutralization with metal cations or amines. Extensive studies have been reported, and useful reviews of the polymers have appeared (3—8). Despite the broad scope of the field and the unusual property combinations obtainable, commercial exploitation has been confined mainly to the original family based on ethylene copolymers. The reasons for this situation have been discussed (9). Within certain industries, such as flexible packaging, the word ionomer is understood to mean a copolymer of ethylene with methacrylic or acryhc acid, partly neutralized with sodium or zinc. [Pg.404]

Ethoxylation of alkyl amine ethoxylates is an economical route to obtain the variety of properties required by numerous and sometimes smaH-volume industrial uses of cationic surfactants. Commercial amine ethoxylates shown in Tables 27 and 28 are derived from linear alkyl amines, ahphatic /-alkyl amines, and rosin (dehydroabietyl) amines. Despite the variety of chemical stmctures, the amine ethoxylates tend to have similar properties. In general, they are yellow or amber Hquids or yellowish low melting soHds. Specific gravity at room temperature ranges from 0.9 to 1.15, and they are soluble in acidic media. Higher ethoxylation promotes solubiUty in neutral and alkaline media. The lower ethoxylates form insoluble salts with fatty acids and other anionic surfactants. Salts of higher ethoxylates are soluble, however. Oil solubiUty decreases with increasing ethylene oxide content but many ethoxylates with a fairly even hydrophilic—hydrophobic balance show appreciable oil solubiUty and are used as solutes in the oil phase. [Pg.256]

The chlorohydrin process (24) has been used for the preparation of acetyl-P-alkylcholine chloride (25). The preparation of salts may be carried out mote economically by the neutralization of choline produced by the chlorohydrin synthesis. A modification produces choline carbonate as an intermediate that is converted to the desired salt (26). The most practical production procedure is that in which 300 parts of a 20% solution of trimethyl amine is neutralized with 100 parts of concentrated hydrochloric acid, and the solution is treated for 3 h with 50 parts of ethylene oxide under pressure at 60°C (27). [Pg.101]

Ethylene-acrylic acid copolymer neutralized with amines such as triethanol amine or N-methyl diethanol amine enhances anti-settling properties [1198, 1554]. [Pg.9]

Melphalan and the racemic analog have been prepared by two general routes (Scheme I). In Approach (A) the amino acid function is protected, and the nitrogen mustard moiety is prepared by conventional methods from aromatic nitro-derivatives. Thus, the ethyl ester of N-phthaloyl-phenylalanine was nitrated and reduced catalytically to amine I. Compound I was reacted with ethylene oxide to form the corresponding bis(2-hydroxyethyl)amino derivative II, which was then treated with phosphorus oxychloride or thionyl chloride. The blocking groups were removed by acidic hydrolysis. Melphalan was precipitated by addition of sodium acetate and was recrystallized from methanol. No racemization was detected [10,28—30]. The hydrochloride was obtained in pure form from the final hydrolysis mixture by partial neutralization to pH 0.5 [31]. Variants of this approach, used for the preparation of the racemic compound, followed the same route via the a-acylamino-a-p-aminobenzyl malonic ester III [10,28—30,32,33] or the hydantoin IV [12]. [Pg.268]

Over 35 years ago, Richard F. Heck found that olefins can insert into the metal-carbon bond of arylpalladium species generated from organomercury compounds [1], The carbopalladation of olefins, stoichiometric at first, was made catalytic by Tsutomu Mizoroki, who coupled aryl iodides with ethylene under high pressure, in the presence of palladium chloride and sodium carbonate to neutralize the hydroiodic acid formed (Scheme 1) [2], Shortly thereafter, Heck disclosed a more general and practical procedure for this transformation, using palladium acetate as the catalyst and tri-w-butyl amine as the base [3], After investigations on stoichiometric reactions by Fitton et al. [4], it was also Heck who introduced palladium phosphine complexes as catalysts, enabling the decisive extension of the ole-fination reaction to inexpensive aryl bromides [5],... [Pg.277]

Fig. 4. Potentiometric - - and viscosimetric -O- titration curves using HC1 as titrating reagent ( 3 = degree of protonation of residual tertiary amine groups 5 = overall degree of neutralization e = degree of neutralization of quaternary ammonium hydroxide sites) of partially quatemized poly[thio-l-(N,N-dimethyl-aminomethyl)ethylene]... Fig. 4. Potentiometric - - and viscosimetric -O- titration curves using HC1 as titrating reagent ( 3 = degree of protonation of residual tertiary amine groups 5 = overall degree of neutralization e = degree of neutralization of quaternary ammonium hydroxide sites) of partially quatemized poly[thio-l-(N,N-dimethyl-aminomethyl)ethylene]...
Primary alcohols afforded the corresponding carboxylic acids via further oxidation of the aldehyde intermediate, e.g. 1-hexanol afforded 1-hexanoic acid in 95% yield. It is important to note, however, that this was achieved without the requirement of one equivalent of base to neutralize the carboxylic acid product (which is the case with supported noble metal catalysts). In contrast, when 1 mol% TEMPO (4 equivalents per Pd) was added, the aldehyde was obtained in high yield, e.g. 1-hexanol afforded 1-hexanal in 97% yield. Under cosolvent conditions using water/ethylene carbonate, Pd-neocuproine was found to be even more active (Fig. 4.65) [174]. This system is exceptional because of its activity (TOF 500h-1 could be reached for 2-octanol) and functional group tolerance, such as C=C bonds, C = C bonds, halides, a-carbonyls, ethers, amines etc. Thereby this system is expected to have a broad synthetic utility. [Pg.177]

Reaction of [Mn(R)(CO)j] with neutral nucleophiles is by far the most widely studied type of reaction for [Mn(R)(CO)s] compounds. The reaction usually involves addition of the neutral neucleophile, L, and is accompanied by CO insertion/alkyl migration to form an acyl species [Eq. (29)]. L is usually a tertiary phosphine (PR3), an alkylated amine (RNH2), or free carbon monoxide. Besides being a carbon-carbon bond forming reaction of fundamental importance, alkyl migration reactions of transition metal alkyl species have direct relevance to catalysis, especially for the 0X0 or hydroformylation process (2), the Monsanto acetic acid synthesis (2), and the synthesis of ethylene glycol (94). [Pg.189]

The synthesis of the ethylene-bridged dinuclear complexes 532 employs the standard amine elimination procedures. Thus, aminolysis of Zr(NMe2)4 with the neutral, C2H4-linked bis(indenyl) constrained-geometry-type ligand gives the bis(amido) bimetallic complex as a mixture of two diastereomers, in a 1 1.3 ratio (Scheme 120).364 Treatment of this... [Pg.863]

Any basic or alkaline material can react with a zeolite to effectively neutralize the acidic active sites, which generally results in irreversible loss of catalyst activity. Basic compounds found in the ethylene or benzene feedstocks can include amines, amides, nitriles, and trace metal cations such as sodium and potassium. Of particular concern are nitrogen-containing organic compormds typically present in the benzene feed. [Pg.932]


See other pages where Ethylene amine-neutralized is mentioned: [Pg.56]    [Pg.174]    [Pg.136]    [Pg.44]    [Pg.178]    [Pg.441]    [Pg.92]    [Pg.43]    [Pg.169]    [Pg.249]    [Pg.308]    [Pg.21]    [Pg.37]    [Pg.95]    [Pg.21]    [Pg.37]    [Pg.534]    [Pg.440]    [Pg.379]    [Pg.146]    [Pg.73]    [Pg.763]    [Pg.1395]    [Pg.907]    [Pg.411]    [Pg.182]    [Pg.770]    [Pg.785]    [Pg.819]    [Pg.838]    [Pg.99]    [Pg.495]    [Pg.184]    [Pg.1001]    [Pg.85]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Amine neutralization

Ethylene amine

Neutral ethylene

Neutralized amines

© 2024 chempedia.info