Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethyl 2- acetic acid, synthesis

The preparation of ethyl cyanoacetate proceeds via ethyl chloroacetate and begins with acetic acid Wnte a sequence of reactions descnbmg this synthesis... [Pg.912]

Since 1960, the Hquid-phase oxidation of ethylene has been the process of choice for the manufacture of acetaldehyde. There is, however, stiU some commercial production by the partial oxidation of ethyl alcohol and hydration of acetylene. The economics of the various processes are strongly dependent on the prices of the feedstocks. Acetaldehyde is also formed as a coproduct in the high temperature oxidation of butane. A more recently developed rhodium catalyzed process produces acetaldehyde from synthesis gas as a coproduct with ethyl alcohol and acetic acid (83—94). [Pg.51]

Production of maleic anhydride by oxidation of / -butane represents one of butane s largest markets. Butane and LPG are also used as feedstocks for ethylene production by thermal cracking. A relatively new use for butane of growing importance is isomerization to isobutane, followed by dehydrogenation to isobutylene for use in MTBE synthesis. Smaller chemical uses include production of acetic acid and by-products. Methyl ethyl ketone (MEK) is the principal by-product, though small amounts of formic, propionic, and butyric acid are also produced. / -Butane is also used as a solvent in Hquid—Hquid extraction of heavy oils in a deasphalting process. [Pg.403]

A Methylamino)phenol. This derivative (15) is easily soluble ia ethyl acetate, ethanol, diethyl ether, and benzene. It is also soluble ia hot water, but only spatingly soluble ia cold water. Industrial synthesis is by heating 3-(A/-methylamino)benzenesulfonic acid with sodium hydroxide at 200—220°C (179) or by the reaction of resorciaol with methylamiae ia the presence of aqueous phosphoric acid at 200°C (180). [Pg.315]

Pyrrohdinone (2-pyrrohdone, butyrolactam or 2-Pyrol) (27) was first reported in 1889 as a product of the dehydration of 4-aminobutanoic acid (49). The synthesis used for commercial manufacture, ie, condensation of butyrolactone with ammonia at high temperatures, was first described in 1936 (50). Other synthetic routes include carbon monoxide insertion into allylamine (51,52), hydrolytic hydrogenation of succinonitnle (53,54), and hydrogenation of ammoniacal solutions of maleic or succinic acids (55—57). Properties of 2-pyrrohdinone are Hsted in Table 2. 2-Pyrrohdinone is completely miscible with water, lower alcohols, lower ketones, ether, ethyl acetate, chloroform, and benzene. It is soluble to ca 1 wt % in aUphatic hydrocarbons. [Pg.359]

Acetanilides, benzoyl-colour couplers in colour photography, 1, 372 Acetanilides, pivaloyl-colour couplers in colour photography, 1, 372 Acetazolamide — see l,3,4-Thiadiazole-2-sulfonamide, 5-acetamido-Acetic acid, acetamidocyano-ethyl ester, 1, 307 Acetic acid, 2-acylphenyl-isochroman-3-one synthesis from, 3, 858 Acetic acid, 3-benzo[6]thiophenyl-biological activity, 4, 912 Acetic acid, l,2-benzoxazol-3-yl-electrophilic substitution, 6, 48... [Pg.508]

NKOH, EtOH, 20°, 5-10 min 80% yield. 5-2,2-Bis(carboethoxy)ethyl thioether, stable to acidic reagents such as trifluoroacetic acid and hydrogen bromide/acetic acid, has been used in a synthesis of glutathione. ... [Pg.296]

This synthesis came shortly after one by Prelog, Kohlberg, Cerkovnikov, Rezek and Piantanida (1937) based on a series of reactions which, with modifications and extensions. Prelog and his colleagues have applied to the syntheses of bridged heterocyclic nuclei, of which this is an example. 4-Hydroxymethyltetrahydropyran (VI R =. OH) is converted via the bromo-compound (VI R = Br) and the nitrile (VI R = CN) into tetrahydropyran-4-acetic acid of which the ethyl ester (VII) is reduced to 4-()3-hydroxyethyl)-tetrahydropyTan (VIII). This is converted by fuming hydrobromic acid into 3-(2-bromoethyl)-l 5-dibromopentane (IX) which with ammonia in methyl alcohol yields quinuclidine (V). [Pg.455]

Knorr discovered that treatment of ethyl a-oximinoacetoacetate (7) and ethyl acetoacetate (8) with zinc and acetic acid affords 2,4-dicarboethoxy-3,5-dimethylpyrrole (9). Extensive modifications of this reaction over the past 100 years have elevated the Knorr pyrrole synthesis to one of exceptional generality and versatility. [Pg.79]

In 1897, Reissert reported the synthesis of a variety of substituted indoles from o-nitrotoluene derivatives. Condensation of o-nitrotoluene (5) with diethyl oxalate (2) in the presense of sodium ethoxide afforded ethyl o-nitrophenylpyruvate (6). After hydrolysis of the ester, the free acid, o-nitrophenylpyruvic acid (7), was reduced with zinc in acetic acid to the intermediate, o-aminophenylpyruvic acid (8), which underwent cyclization with loss of water under the conditions of reduction to furnish the indole-2-carboxylic acid (9). When the indole-2-carboxylic acid (9) was heated above its melting point, carbon dioxide was evolved with concomitant formation of the indole (10). [Pg.154]

Synthesis of 9-oxo-11 CH,1 Sol-bis-(2-tetrahydropyranytoxy)-16,16-dimethyl-prosta-trans-2, trans-13-dienoicacid 4gof ethyl 9a-hydroxy-1 la,1 5a-bis-(2-tetrahydropyranyloxy )-16,16-dimethyl-prosta-trans-2,trans-13-dienoate were dissolved In 130 ml of a mixture of ethanol-water (3 1), mixed with 3.9 g of potassium hydroxide and stirred at 25°C for 2 hours. The reaction mixture was acidified with aqueous solution of oxalic acid to pH 5, and diluted with 100 ml of water, extracted with ethyl acetate. The extracts were washed with water, dried over sodium sulfate and concentrated under reduced pressure to obtain 3,88 g of 90 -hydroxy-11a,15a-bis-(2-tetrahydropyranyloxy)-16,16-dimethyl-prosta-trans-2,trans-13-dienoic acid. [Pg.718]

Synthesis of 16,16-dimethyl-trans-A -PGEi 2.35 g of the bis-tetrahydropyranyl ether were dissolved in 6 ml of tetrahydrofuran and 60 ml of 65%-acetic acid aqueous solution and the solution stirred at 60°C to 70°C for 20 minutes. The reaction mixture was extracted with ethyl acetate, and the organic layer was washed with water, dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using ethyl acetate-cyclohexane (2 3) as eluent to yield 270 mg of the title compound. [Pg.719]

We said in Section 21.6 that mechanistic studies on ester hydrolysis have been carried out using ethyl propanoate labeled with lsO in the etherlike oxygen. Assume that Odabeled acetic acid is your only source of isotopic oxygen, and then propose a synthesis of the labeled ethyl propanoate. [Pg.833]

These procedures illustrate the use of N-ethyl-5-phenylisoxazolium-3 -sulfonate as a reagent for peptide synthesis.2-3 Procedure A is recommended for peptides that are not soluble in either organic solvents or in water. Procedure B illustrates the formation of a peptide that is soluble both in organic solvents and in water. Por peptides that are soluble in organic solvents and insoluble in water, the submitters recommend the use of Procedure B, except that the peptide product may be recovered directly from its solution in ethyl acetate after this organic solution has been washed successively with aqueous 5% sodium bicarbonate, water, aqueous 1 M hydrochloric acid, and water. Table I summarizes the preparation of various peptides by these procedures. Some more complex examples from other laboratories are listed elsewhere.2b... [Pg.92]

By using a mixture of ethyl acetate and D2O as solvent for hydrogenation, up to 75% deuterium is incorporated in the reduced product.13 This result indicates that the role of water here is not only as a solvent. Research on asymmetric hydrogenation in an aqueous medium is still actively being pursued. The method has been applied extensively in the synthesis of various amino acid derivatives.14... [Pg.315]

The reaction of potassium 3-amino-4-oxo-3,4-dihydroquinazoline-2-thiolate 62 with a-bromophenylacetic acid 63 resulted in the formation of (3-amino-4-oxo-3,4-dihydroquinazolin-2-ylsulfanyl)-phenyl-acetic acid methyl ester 64 which on alkali treatment and subsequent acidification resulted in the synthesis of 2-phenyl- 1-thia-4,4a,9-triaza-anthracene-3,10-dione 65 <1999JCR(S)86>. Similarly, the reaction of potassium 3-amino-5,6-dimethyl-4-oxo-3,4,4a,7a-tetrahydrothieno[2,3- pyrimidine-2-thiolate 66 with a-bromo-ester 67 resulted in the formation of 2-(3-amino-5,6-dimethyl-4-oxo-3,4,4a,7a-tetrahydrothieno[2,3- / pyrimidin-2-ylsulfanyl)-propionic acid ethyl ester 68. Subsequent treatment with alkali followed by acidification resulted in the formation of 2,3,7-trimethyl-3a,9a-dihydro-l,8-dithia-4a,5,9-triazacyclopenta[ ]naphthalene-4,6-dione 69 <2000JHC1161>... [Pg.334]

The synthesis of the corresponding naphthyridone scaffold was carried out according to the methods reported by Chu et al. [12] and Sanchez et al. [13]. Namely, the hydrolysis of ethyl 2,6-dichloro-5-fluoronicotinate (3) [14] followed by reaction with thionyl chloride results in the formation of 2,6-dichloro-5-fluoronicotinyl chloride (4). Treatment of this compound with monoethyl malonate in THF under n-butyllithium followed by acidification and decarboxylation gives rise to ethyl 2,6-dichloro-5-fluoronicotinylacetate (5). Reaction of compound 5 with ethyl orthoformate in acetic acid followed by cyclopropylamine results in the formation of 3-cyclopropylamino-2-(2,6-dichloro-5-fluoronicotinyl)acrylate (6), the cyclization reaction of which under NaH/THF gives rise to the required ethyl l-cyclopropyl-6-fluoro-7-chloro-l,4-dihydro-4-oxo-l,8-naphthyridine-3-carboxylate (7), as shown in Scheme 3. [Pg.173]

The synthesis of compound 27 was initiated with the treatment of ke-toester 29, reported by Yoshida et al. [25], with ethyl orthoformate in acetic acid, followed by reaction with (l.R,2S)-2-fluoro-1-cyclopropylamine p-toluenesulfonic acid salt in the presence of triethylamine to yield an enam-inoketoester intermediate, cyclization of which under NaH in dioxane yields the 5-nitroquinolone derivative (30). Reduction of the nitro group of compound 30 followed by acid hydrolysis provides compound 27 via the amino-quinolone derivative (31), according to Scheme 7. [Pg.177]

With these solid supports in hand, we turned our attention to a new route to the synthesis of our target molecule 23 (Scheme 8). The tricky reductive amination should be replaced by an N-alkylation. To that end, bromoacetic acid is attached to 24c using DIC and Hiinig s base followed by the nucleophilic substitution with the corresponding benzy-lamine in DMSO/toluene (1 1), which can be easily monitored by the Beilstein test, followed by sulfonamide formation in DCM using N-methylmorpholine as base. For the final cleavage, 2% TFA in DCM is used and the resulting solution is filtered in a saturated NaHCC>3 solution to neutralise the acid before evaporation of the solvent. The crude product was then crystallised from ethyl acetate/heptane to yield the desired product in 27% yield overall and 99A% HPLC purity (see Table 4). [Pg.201]


See other pages where Ethyl 2- acetic acid, synthesis is mentioned: [Pg.60]    [Pg.345]    [Pg.282]    [Pg.320]    [Pg.296]    [Pg.81]    [Pg.141]    [Pg.257]    [Pg.312]    [Pg.508]    [Pg.462]    [Pg.118]    [Pg.303]    [Pg.58]    [Pg.558]    [Pg.71]    [Pg.97]    [Pg.267]    [Pg.43]    [Pg.286]    [Pg.801]    [Pg.227]    [Pg.130]    [Pg.189]    [Pg.510]    [Pg.140]    [Pg.237]    [Pg.291]    [Pg.206]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



2- acetic acid ethyl

Acetals, synthesis

Acetic acid synthesis

Acetic synthesis

Ethyl acetate synthesis

Ethyl acetate, acidity

Synthesis acetate

© 2024 chempedia.info