Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy ethers

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

An unusual method for the preparation of syndiotactic polybutadiene was reported by The Goodyear Tire Rubber Co. (43) a preformed cobalt-type catalyst prepared under anhydrous conditions was found to polymerize 1,3-butadiene in an emulsion-type recipe to give syndiotactic polybutadienes of various melting points (120—190°C). These polymers were characterized by infrared spectroscopy and nuclear magnetic resonance (44—46). Both the Ube Industries catalyst mentioned previously and the Goodyear catalyst were further modified to control the molecular weight and melting point of syndio-polybutadiene by the addition of various modifiers such as alcohols, nitriles, aldehydes, ketones, ethers, and cyano compounds. [Pg.531]

Direct proof of an oxaziridine intermediate was achieved in photolysis experiments in an organic glass at 77 K (80JA5643). Oxaziridine (75), formed by photolysis of A/-oxide (74) and evidenced by UV spectroscopy under the above conditions, decomposed at higher temperature to form the imino ether (76) by N—O bond cleavage and C -> O migration of an aryl group. [Pg.206]

Coenzyme Q4 (Ubiquinone-4, 2,3-dimethoxy-5-methyl-6-[3,7,ll,15-tetrametbyl-hexadeca-2/,6/,10/,14-tetraenyl]-[l,4]benzoquinone [4370-62-l]M 454.7, m 30 , 33-45 , A (275nm) 185. A red oil purified by TLC chromatography on Si02 and eluted with Et20-hexane. Purity can be checked by HPLC (silica column using 7% Et20-hexane). It has A- ax 270 nm (e 14,800) in pet ether. [NMR and MS Naruta J Org Chem 45 4097 1980 cf Morton Biochemical Spectroscopy (Adam Hilger, London, 1975) p 491]. It has also been dissolved in MeOH/EtOH (1 1 v/v) and kept at 5 until crystals appear [Lester and Crane Biochim Biophys Acta 32 497 1958]. [Pg.522]

The diffusion, location and interactions of guests in zeolite frameworks has been studied by in-situ Raman spectroscopy and Raman microscopy. For example, the location and orientation of crown ethers used as templates in the synthesis of faujasite polymorphs has been studied in the framework they helped to form [4.297]. Polarized Raman spectra of p-nitroaniline molecules adsorbed in the channels of AIPO4-5 molecular sieves revealed their physical state and orientation - molecules within the channels formed either a phase of head-to-tail chains similar to that in the solid crystalline substance, with a characteristic 0J3 band at 1282 cm , or a second phase, which is characterized by a similarly strong band around 1295 cm . This second phase consisted of weakly interacting molecules in a pseudo-quinonoid state similar to that of molten p-nitroaniline [4.298]. [Pg.262]

The main experimental techniques used to study the failure processes at the scale of a chain have involved the use of deuterated polymers, particularly copolymers, at the interface and the measurement of the amounts of the deuterated copolymers at each of the fracture surfaces. The presence and quantity of the deuterated copolymer has typically been measured using forward recoil ion scattering (FRES) or secondary ion mass spectroscopy (SIMS). The technique was originally used in a study of the effects of placing polystyrene-polymethyl methacrylate (PS-PMMA) block copolymers of total molecular weight of 200,000 Da at an interface between polyphenylene ether (PPE or PPO) and PMMA copolymers [1]. The PS block is miscible in the PPE. The use of copolymers where just the PS block was deuterated and copolymers where just the PMMA block was deuterated showed that, when the interface was fractured, the copolymer molecules all broke close to their junction points The basic idea of this technique is shown in Fig, I. [Pg.223]

Ethers are difficult to identify by IR spectroscopy. Although they show an absorption due to C-O single-bond stretching in the range 1050 to 1150 cnr1, many other kinds of absorptions occur in the same range. Figure 18.3 shows the IR spectrum of diethyl ether and identifies the C-0 stretch. [Pg.671]

The thin-layer technique (CA 60, 6691) utilizes aliquots of proplnt ether extract (I) and the ether soln (II) of a known mixt. II consists of nitrates of glycerol and glycol, di-Bu or di-Et phthalates, Et or Me centralites, DNT, and diphenylamine. The chromatoplates are made of 85 15 silica gel and plaster of Paris. These plates, containing spots of I and 11, are developed with 1 1 C6H6-petroleum ether, then sprayed with specific detectors by color. The method is much quicker and easier than chemical analysis and simpler than infrared spectroscopy and column chromatography... [Pg.945]

The synthesis and purification of cumyl alcohol (CumOH), p-dicumyl methyl ether (DCE)) and 2-chloro-2,4,4-trimethylpentane (TMPC1), and the sources and purification of methyl chloride (MeCl), methylcyclohexane (MCHx), isobutylene have been described [9, 10]. P-Pinene (P-PIN), (Aldrich), was chromatographed over alumina (activity I, Fisher), and freshly distilled over CaH2 under nitrogen according to 1H-NMR spectroscopy and GC analysis the purity was >99%. 2,6-Di-/er/-butylpyridine (DtBP), (Aldrich), anhydrous A,A-dimethylacetamid (DMA), (Aldrich), ethylaluminum dichloride (EtAlCl2), 1.0 M solution in hexanes (Aldrich), and methanol (Fisher) were used as received. [Pg.2]

Two-dimensional TLC on silica gel G has been used to identify alcohol ether sulfates in liquid laundry detergents. The spots of the chromatograms were examined by UV, IR, and NMR spectroscopy and the spectra compared with those of standard surfactants [283]. [Pg.283]

Alcohol sulfates and alcohol ether sulfates separated by HPLC on a styrene-divinylbenzene copolymer column with 4 1 (v/v) methanol and 0.05 M ammonium acetate aqueous solution as the mobile phase were analyzed by simultaneous inductively coupled argon plasma vacuum emission spectroscopy (IPC), monitoring the 180.7-nm sulfur line as a sulfur-specific detector [294]. This method was applied to the analysis of these surfactants in untreated wastewaters. [Pg.284]

As for other surfactants [239], infrared spectroscopy can also be used as a quick method for the identification of ether carboxylates [238]. [Pg.347]

An alternative technique to NMR spectroscopy is chromatography. The partially functionalized sample is completely fimctionahzed with a group different from the one present, the product carefully de-polymerized, its structure examined with a chromatographic technique. For example, partially substituted CA was further derivatized with methyl vinyl ether, the product hydrolyzed, the monomers produced examined with gas chromatography [241]. HPLC has been advantageously applied for the determination of substitution pattern for CAs with DS 0.8 to 3.0, by employing the same approach, i.e., further derivatization of the partially derivatized polymer with methyl trifluoroacetate, followed by de-polymerization. The results obtained by this technique compared favorably with those obtained by NMR [242]. [Pg.140]

Since the reactivity of the sulfanes, dissolved in ether or chloroform, towards such reagents is higher than that of Ss a separate determination of these components in mixtures is possible [80]. However, nowadays the sulfanes can be more easily determined by NMR spectroscopy and the dissolved sulfur by Raman spectroscopy (see above). [Pg.121]


See other pages where Spectroscopy ethers is mentioned: [Pg.354]    [Pg.538]    [Pg.145]    [Pg.895]    [Pg.91]    [Pg.304]    [Pg.522]    [Pg.522]    [Pg.372]    [Pg.305]    [Pg.96]    [Pg.99]    [Pg.1585]    [Pg.671]    [Pg.671]    [Pg.1282]    [Pg.539]    [Pg.406]    [Pg.409]    [Pg.66]    [Pg.459]    [Pg.622]    [Pg.289]    [Pg.144]    [Pg.121]    [Pg.37]    [Pg.407]    [Pg.32]    [Pg.61]    [Pg.51]    [Pg.50]    [Pg.137]    [Pg.127]    [Pg.119]   
See also in sourсe #XX -- [ Pg.633 , Pg.634 ]

See also in sourсe #XX -- [ Pg.631 , Pg.632 ]




SEARCH



Diethyl ether infrared spectroscopy

Infrared spectroscopy ethers

Infrared spectroscopy ethers and epoxides

Nuclear magnetic resonance spectroscopy ethers

Nuclear magnetic resonance spectroscopy ethers and epoxides

Spectroscopy of Alcohols, Phenols, and Ethers

Spectroscopy of Ethers

© 2024 chempedia.info