Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers, inclusion

In principle, mass spectrometry is not suitable to differentiate enantiomers. However, mass spectrometry is able to distinguish between diastereomers and has been applied to stereochemical problems in different areas of chemistry. In the field of chiral cluster chemistry, mass spectrometry, sometimes in combination with chiral chromatography, has been extensively applied to studies of proton- and metal-bound clusters, self-recognition processes, cyclodextrin and crown ethers inclusion complexes, carbohydrate complexes, and others. Several excellent reviews on this topic are nowadays available. A survey of the most relevant examples will be given in this section. Most of the studies was based on ion abundance analysis, often coupled with MIKE and CID ion fragmentation on MS " and FT-ICR mass spectrometric instruments, using Cl, MALDI, FAB, and ESI, and atmospheric pressure ionization (API) methods. [Pg.196]

Keywords tropolone alkyl ether, inclusion crystal, [2+24]photocycloaddition... [Pg.176]

Table 35 Structurally characterized U 02 crown ether inclusion compounds. Table 35 Structurally characterized U 02 crown ether inclusion compounds.
Most of these additives do not have significant regulation issues other than those previously discussed such as the ethylene glycol and ethylene-glycol-based alcohol ether inclusion on the HAP list. The response has been to switch to similar compounds prepared from propylene oxide instead of ethylene oxide. The VOC of a white exterior house paint containing typical examples of the additives noted above is 0.196 kg VOC/liter excluding water [4(h)]. [Pg.228]

Chiral crown ethers Inclusion complexation Ion (primary amino group)-dipole... [Pg.14]

Fig. 9. An inclusion complex formed between a protonated primary amine and a chiral crown ether. Fig. 9. An inclusion complex formed between a protonated primary amine and a chiral crown ether.
Ethers, such as MTBE and methyl / fZ-amyl ether (TAME) are made by a catalytic process from methanol (qv) and the corresponding isomeric olefin. These ethers have excellent octane values and compete on an economic basis with alkylation for inclusion in gasoline. Another ether, ethyl tert-huty ether (ETBE) is made from ethanol (qv) and isobutylene (see Butylenes). The cost and economic driving forces to use ETBE vs MTBE or TAME ate a function of the raw material costs and any tax incentives that may be provided because of the ethanol that is used to produce it. [Pg.185]

The polymerization is carried out at temperatures of 0—80°C in 1—5 h at a soHds concentration of 6—12%. The polymerization is terminated by neutralizing agents such as calcium hydroxide, calcium oxide, calcium carbonate, or lithium hydroxide. Inherent viscosities of 2-4 dL/g are obtained at 3,4 -dianiinodiphenyl ether contents of 35—50 mol %. Because of the introduction of nonlinearity into the PPT chain by the inclusion of 3,4 -dianiinodiphenyl ether kinks, the copolymer shows improved tractabiUty and may be wet or dry jet-wet spun from the polymerization solvent. The fibers are best coagulated in an aqueous equiUbrium bath containing less than 50 vol % of polymerization solvent and from 35 to 50% of calcium chloride or magnesium chloride. [Pg.66]

Podates AcycHc analogues of crown ethers /coronands and cryptands (podands, eg, (11) (30) are also capable of forming inclusion compounds (podates) with cations and uncharged organic molecules, the latter being endowed with a hydrogen bond fiinctionahty. Podates normally are less stable than coronates and cryptates but have favorable kinetics. [Pg.62]

Inclusions of Other Grown Analogues. A variety of crown analogues and hybrid modifications (24—28) with other topological features (lariat ethers (31,32), octopus molecules (33), spherands (eg, (12) (34), torands (35)) including chiral derivatives (36) have been prepared and demonstrated to show particular inclusion properties such as chiroselective inclusion (Fig. 4) (37) or formation of extremely stable complexes (K ">(LR) for (12)... [Pg.62]

Vulcanisation can be effected by diamines, polyamines and lead compounds such as lead oxides and basic lead phosphite. The homopolymer vulcanisate is similar to butyl rubber in such characteristics as low air permeability, low resilience, excellent ozone resistance, good heat resistance and good weathering resistance. In addition the polyepichlorohydrins have good flame resistance. The copolymers have more resilience and lower brittle points but air impermeability and oil resistance are not so good. The inclusion of allyl glycidyl ether in the polymerisation recipe produces a sulphur-curable elastomer primarily of interest because of its better resistance to sour gas than conventional epichlorhydrin rubbers. [Pg.548]

Other measures of nucleophilicity have been proposed. Brauman et al. studied Sn2 reactions in the gas phase and applied Marcus theory to obtain the intrinsic barriers of identity reactions. These quantities were interpreted as intrinsic nucleo-philicities. Streitwieser has shown that the reactivity of anionic nucleophiles toward methyl iodide in dimethylformamide (DMF) is correlated with the overall heat of reaction in the gas phase he concludes that bond strength and electron affinity are the important factors controlling nucleophilicity. The dominant role of the solvent in controlling nucleophilicity was shown by Parker, who found solvent effects on nucleophilic reactivity of many orders of magnitude. For example, most anions are more nucleophilic in DMF than in methanol by factors as large as 10, because they are less effectively shielded by solvation in the aprotic solvent. Liotta et al. have measured rates of substitution by anionic nucleophiles in acetonitrile solution containing a crown ether, which forms an inclusion complex with the cation (K ) of the nucleophile. These rates correlate with gas phase rates of the same nucleophiles, which, in this crown ether-acetonitrile system, are considered to be naked anions. The solvation of anionic nucleophiles is treated in Section 8.3. [Pg.360]

Coming back to the chain reaction sequence (Scheme 8-50) the inclusion of the final step shown here demonstrates clearly that the initial formation of the aryl radical from the diazo ether (Scheme 8-49) may be only an initiation step. The arguments of Broxton concerning whether the homolytic dediazoniation starts with the diazo ether or with the diazonium ion therefore become irrelevant. [Pg.211]

It is well known that spontaneous resolution of a racemate may occur upon crystallization if a chiral molecule crystallizes as a conglomerate. With regard to sulphoxides, this phenomenon was observed for the first time in the case of methyl p-tolyl sulphoxide269. The optical rotation of a partially resolved sulphoxide (via /J-cyclodextrin inclusion complexes) was found to increase from [a]589 = + 11.5° (e.e. 8.1%) to [a]589 = +100.8 (e.e. 71.5%) after four fractional crystallizations from light petroleum ether. Later on, few optically active ketosulphoxides of low optical purity were converted into the pure enantiomers by fractional crystallization from ethyl ether-hexane270. This resolution by crystallization was also successful for racemic benzyl p-tolyl sulphoxide and t-butyl phenyl sulphoxide271. [Pg.286]

When the reaction of two compounds results in a product that contains all the mass of the two compounds, the product is called an addition compound. There are several kinds. In the rest of this chapter, we will discuss addition compounds in which the molecules of the starting materials remain more or less intact and weak bonds hold two or more molecules together. We can divide them into four broad classes electron donor-acceptor complexes, complexes formed by crown ethers and similar compounds, inclusion compounds, and catenanes. [Pg.102]

Chiral Recognition. The use of chiral hosts to form diastereomeric inclusion compounds was mentioned above. But in some cases it is possible for a host to form an inclusion compound with one enantiomer of a racemic guest, but not the other. This is caUed chiral recognition. One enantiomer fits into the chiral host cavity, the other does not. More often, both diastereomers are formed, but one forms more rapidly than the other, so that if the guest is removed it is already partially resolved (this is a form of kinetic resolution, see category 6). An example is use of the chiral crown ether (53) partially to resolve the racemic amine salt (54). " When an aqueous solution of 54 was... [Pg.152]

The theory and development of a solvent-extraction scheme for polynuclear aromatic hydrocarbons (PAHs) is described. The use of y-cyclodextrin (CDx) as an aqueous phase modifier makes this scheme unique since it allows for the extraction of PAHs from ether to the aqueous phase. Generally, the extraction of PAHS into water is not feasible due to the low solubility of these compounds in aqueous media. Water-soluble cyclodextrins, which act as hosts in the formation of inclusion complexes, promote this type of extraction by partitioning PAHs into the aqueous phase through the formation of complexes. The stereoselective nature of CDx inclusion-complex formation enhances the separation of different sized PAH molecules present in a mixture. For example, perylene is extracted into the aqueous phase from an organic phase anthracene-perylene mixture in the presence of CDx modifier. Extraction results for a variety of PAHs are presented, and the potential of this method for separation of more complex mixtures is discussed. [Pg.167]


See other pages where Ethers, inclusion is mentioned: [Pg.50]    [Pg.69]    [Pg.203]    [Pg.247]    [Pg.102]    [Pg.103]    [Pg.104]    [Pg.108]    [Pg.3]    [Pg.288]    [Pg.175]    [Pg.3]    [Pg.50]    [Pg.69]    [Pg.203]    [Pg.247]    [Pg.102]    [Pg.103]    [Pg.104]    [Pg.108]    [Pg.3]    [Pg.288]    [Pg.175]    [Pg.3]    [Pg.67]    [Pg.177]    [Pg.177]    [Pg.186]    [Pg.69]    [Pg.70]    [Pg.71]    [Pg.72]    [Pg.73]    [Pg.18]    [Pg.127]    [Pg.254]    [Pg.304]    [Pg.109]    [Pg.119]    [Pg.178]   
See also in sourсe #XX -- [ Pg.57 , Pg.58 , Pg.59 , Pg.60 , Pg.61 , Pg.62 ]




SEARCH



Ether Inclusion Compounds

Host-guest inclusion complexes chiral crown ether hosts

Inclusion complexes crown ethers

Inclusion crown ether

© 2024 chempedia.info