Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esterification reactivity

An important factor in the esterification reactivity of cellulose is the history of its method of manufacture and pretreatment or activation prior to the reaction. Since cellulose is insoluble in the acGtylation solvent and is in a fibrous form, it is necessary to make the hydroxyl groups as accessible to the acetylating agent as is possible. The pretreatment or activation is designed to accomplish this. Soaking the cellulose in acetic add or aqueous acetic add prior to esterification greatly improves its reactivity. [Pg.742]

Sensitivity analyses were performed on these five esterification reactive distillation systems. In order to find the steady-state gains of the tray temperature in the linear region, extremely small step changes (+ 0.1%) are made in the manipulated variables. [Pg.363]

For steric reasons the order of alcohol reactivity m the Fischer esterification is CH3OH > primary > secondary > tertiary... [Pg.638]

The mechanisms of the Fischer esterification and the reactions of alcohols with acyl chlorides and acid anhydrides will be discussed m detail m Chapters 19 and 20 after some fundamental principles of carbonyl group reactivity have been developed For the present it is sufficient to point out that most of the reactions that convert alcohols to esters leave the C—O bond of the alcohol intact... [Pg.640]

One of the most sensitive tests of the dependence of chemical reactivity on the size of the reacting molecules is the comparison of the rates of reaction for compounds which are members of a homologous series with different chain lengths. Studies by Flory and others on the rates of esterification and saponification of esters were the first investigations conducted to clarify the dependence of reactivity on molecular size. The rate constants for these reactions are observed to converge quite rapidly to a constant value which is independent of molecular size, after an initial dependence on molecular size for small molecules. The effect is reminiscent of the discussion on the uniqueness of end groups in connection with Example 1.1. In the esterification of carboxylic acids, for example, the rate constants are different for acetic, propionic, and butyric acids, but constant for carboxyUc acids with 4-18 carbon atoms. This observation on nonpolymeric compounds has been generalized to apply to polymerization reactions as well. The latter are subject to several complications which are not involved in the study of simple model compounds, but when these complications are properly considered, the independence of reactivity on molecular size has been repeatedly verified. [Pg.278]

The methyl and ethyl esters of cyanoacetic acid are slightly soluble ia water but are completely miscible ia most common organic solvents including aromatic hydrocarbons. The esters, like the parent acid, are highly reactive, particularly ia reactions involving the central carbon atom however, the esters tend not to decarboxylate. They are prepared by esterification of cyanoacetic acid and are used principally as chemical iatermediates. [Pg.225]

The properties of polymers formed by the step growth esterification (1) of glycols and dibasic acids can be manipulated widely by the choice of coreactant raw materials (Table 1) (2). The reactivity fundamental to the majority of commercial resins is derived from maleic anhydride [108-31-6] (MAN) as the unsaturated component in the polymer, and styrene as the coreactant monomer. Propylene glycol [57-55-6] (PG) is the principal glycol used in most compositions, and (i9f2v (9)-phthahc anhydride (PA) is the principal dibasic acid incorporated to moderate the reactivity and performance of the final resins. [Pg.313]

Isomerization is faciUtated by esterification at temperatures above 200°C or by using catalysts, such as piperidine and morpholine (6), that are effective in raising isomerization of fumarate to 95% completion. Resins made by using fumaric acid are exclusively fumarate polymers, demonstrate higher reactivity rates with styrene, and lead to a complete cross-linking reaction. [Pg.315]

Esterification. Extensive commercial use is made of primary amyl acetate, a mixture of 1-pentyl acetate [28-63-7] and 2-metliylbutyl acetate [53496-15-4]. Esterifications with acetic acid are generally conducted in the Hquid phase in the presence of a strong acid catalyst such as sulfuric acid (34). Increased reaction rates are reported when esterifications are carried out in the presence of heteropoly acids supported on macroreticular cation-exchange resins (35) and 2eohte (36) catalysts in a heterogeneous process. Judging from the many patents issued in recent years, there appears to be considerable effort underway to find an appropriate soHd catalyst for a reactive distillation esterification process to avoid the product removal difficulties of the conventional process. [Pg.373]

Sulfonate Esters. Sucrose sulfonates are valuable intermediates for the synthesis of epoxides and derivatives containing halogens, nitrogen, and sulfur. In addition, the sulfonation reaction has been used to determine the relative reactivity of the hydroxyl groups in sucrose. The general order of reactivity in sucrose toward the esterification reaction is OH-6 OH-6 > OH-1 > HO-2. [Pg.34]

Ethylenediamine (70,71), benzyl alcohol and acetone (72), ethylene glycol (73) and C2—C g carboxyUc acids (74) are claimed to increase the reactivity of cellulose toward acetylation. Sodium hydroxide and Hquid ammonia (71) are excellent swelling agents and have been used to activate cellulose before esterification. Ultrasonic treatment of cellulose slurries (75) reportedly swells the fibers and improves reactivity. [Pg.253]

Etherification. The accessible, available hydroxyl groups on the 2, 3, and 6 positions of the anhydroglucose residue are quite reactive (40) and provide sites for much of the current modification of cotton ceUulose to impart special or value-added properties. The two most common classes into which modifications fall include etherification and esterification of the cotton ceUulose hydroxyls as weU as addition reactions with certain unsaturated compounds to produce ceUulose ethers (see Cellulose, ethers). One large class of ceUulose-reactive dyestuffs in commercial use attaches to the ceUulose through an alkaH-catalyzed etherification by nucleophilic attack of the chlorotriazine moiety of the dyestuff ... [Pg.314]

Cl Reactive Blue 19 (9) is prepared by the reaction of bromamine acid (8) with y -aminophenyl-P-hydroxyethylsulfone [5246-57-1] (76) ia water ia the presence of an acid-hinding agent such as sodium bicarbonate and a copper catalyst (Ullmann condensation reaction) and subsequent esterification to form the sulfuric ester. [Pg.318]

Completion of Esterification. Because the esterification of an alcohol and an organic acid involves a reversible equiUbrium, these reactions usually do not go to completion. Conversions approaching 100% can often be achieved by removing one of the products formed, either the ester or the water, provided the esterification reaction is equiUbrium limited and not rate limited. A variety of distillation methods can be appHed to afford ester and water product removal from the esterification reaction (see Distillation). Other methods such as reactive extraction and reverse osmosis can be used to remove the esterification products to maximize the reaction conversion (38). In general, esterifications are divided into three broad classes, depending on the volatility of the esters ... [Pg.376]

The acid chlorides are generally more reactive than the corresponding acid anhydrides. In fact, the alcoholysis of acid chlorides is probably the best laboratory method for preparing esters. Frequentiy, basic materials are added during the course of the reaction to neutralize by-product hydrochloric acid. When the basic material is aqueous caustic, the procedure is referred to as the Schotten-Baumann procedure (73). Esterification of tertiary alcohols by acid chlorides is described in Reference 74. Esters of tertiary alcohols can also be formed through an intermediate /-butyl thioate group (75) ... [Pg.380]

Grignard reagent from, acylation, 4, 237 nitration, 4, 211 reactivity, 4, 71-72 synthesis, 4, 149, 237, 341, 360 Pyrrole-3-carboxylic acids acidity, 4, 71 decarboxylation, 4, 286 esterification, 4, 287 esters... [Pg.818]

Process Applications The production of esters from alcohols and carboxylic acids illustrates many of the principles of reactive distillation as applied to equilibrium-limited systems. The equilibrium constants for esterification reactions are usually relatively close to unity. Large excesses of alcohols must be used to obtain acceptable yields with large recycles. In a reactive-distiUation scheme, the reac-... [Pg.1321]

The presenee of free hydroxy and carboxyl groups in lac resin makes it very reactive, in particular to esterification involving either type of group. Of particular interest is the inter-esterification that occurs at elevated temperatures (>70°C) and... [Pg.868]

The control of chemical reactions (e.g., esterification, sulfonation, nitration, alkylation, polymerization, oxidation, reduction, halogenation) and associated hazards are an essential aspect of chemical manufacture in the CPI. The industries manufacture nearly all their products, such as inorganic, organic, agricultural, polymers, and pharmaceuticals, through the control of reactive chemicals. The reactions that occur are generally without incident. Barton and Nolan [1] examined exothermic runaway incidents and found that the principal causes were ... [Pg.910]

Reactive compatibilization of engineering thermoplastic PET with PP through functionalization has been reported by Xanthos et al. [57]. Acrylic acid modified PP was used for compatibilization. Additives such as magnesium acetate and p-toluene sulfonic acid were evaluated as the catalyst for the potential interchange or esterification reaction that could occur in the melt. The blend characterization through scanning electron microscopy, IR spectroscopy, differential scanning calorimetry, and... [Pg.673]

In the same way, furanothiepin 6 is obtained by esterification of the corresponding diacid, then converted with methylmagnesium bromide to the highly reactive diol 7, which gives a eycloadduct with iV-phenylmaleimide in 65% overall yield67 (see Section 2.2.5.). [Pg.93]

Other examples of esterification with trialkyloxonium salts have been reported.7,8 The present procedure offers the advantages that the reactive carboxylate ion is generated in sitv and that a low-boiling, nonaqueous solvent is employed, whereby the experimental procedure is considerably simplified. A related method has been reported which utilizes a hindered amine wdth dimethyl sulfate [Sulfuric acid, dimethyl csterj as the alkylating agent.9 The present procedure is carried out under somewhat milder conditions and avoids the use of highly toxic reagents. [Pg.62]

One of the main assumptions which have been made in the study of polyesterifications is the concept of equal reactivity of functional groups. It was first postulated by Flory1 who, studying various polyesterifications and model esterifications, found the same orders of reaction and almost the same rate constants for the two systems. He concluded that the reaction rate is not reduced by an increase in the molecular weight of the reactants or an increase in the viscosity of the medium. The concept of equal reactivity of functional groups has been fully and carefully analyzed by Solomon3,135 so that we only discuss here its main characteristics. Flory clearly established the conditions under which the concept of equal reactivity can be applied these are the following ... [Pg.70]

Fiery1 252-254) studied only the last stage of the reactions, i.e. when the concentration of reactive end groups has been greatly decreased and when the dielectric properties of the medium (ester or polyester) no longer change with conversion. Under these conditions, he showed that the overall reaction order relative to various model esterifications and polyesterifications is 3. As a general rule, it is accepted that the order with respect to acid is two which means that the add behaves both as reactant and as catalyst. However, the only way to determine experimentally reaction orders with respect to add and alcohol would be to carry out kinetic studies on non-stoichiometric systems. [Pg.75]


See other pages where Esterification reactivity is mentioned: [Pg.5]    [Pg.7]    [Pg.150]    [Pg.5]    [Pg.7]    [Pg.150]    [Pg.107]    [Pg.379]    [Pg.265]    [Pg.79]    [Pg.508]    [Pg.315]    [Pg.42]    [Pg.340]    [Pg.162]    [Pg.308]    [Pg.22]    [Pg.102]    [Pg.242]    [Pg.251]    [Pg.321]    [Pg.318]    [Pg.378]    [Pg.1322]    [Pg.796]    [Pg.78]    [Pg.772]   
See also in sourсe #XX -- [ Pg.603 ]

See also in sourсe #XX -- [ Pg.603 ]




SEARCH



CONTROL OF REACTIVE DISTILLATIONS FOR ACETIC ACID ESTERIFICATION

Esterification of Homologous Series and the Equal Reactivity Hypothesis

Esterification relative reactivity

© 2024 chempedia.info