Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Erythropoietin function

Clinical pharmacology Erythropoietin is instrumental in the production of red cells from the erythroid tissues in the bone marrow. The majority of this hormone is produced in the kidney in response to hypoxia, with an additional 10% to 15% of synthesis occurring in the hver. Erythropoietin functions as a growth factor, stimulating the mitotic activity of the erythroid progenitor cells and early precursor cells. Chronic renal failure patients often manifest the sequelae of renal dysfunction, including anemia. Anemia in cancer patients may be related to the disease itself or the effect of concomitantly administered chemotherapeutic agents. [Pg.137]

Erythropoietin is a glycoprotein hormone that regulates red blood cell production in a feedback loop manner between kidney and bone marrow based on oxygen tension. It consists of 165 amino acids and has a molecular weight of 30,000-34,000 approximately 30% is accounted for by covalently linked carbohydrate. Erythropoietin is produced by the fetal liver and shortly after birth production switches from the liver to the kidney. In the fetus, erythropoietin functions in a paracrine-endocrine fashion because liver is the site of erythropoietin synthesis as well as ery-thropoiesis. The mechanism of this developmental switch is unclear. In the liver, erythropoietin synthesis occurs in... [Pg.656]

In addition to being involved in the formation of urine, the kidney acts as an endocrine organ secreting renin, erythropoietin, prostaglandins (qv), and kinins it is also capable of synthesizing substances such as la,25-dihydroxycholecalciferol [32222-06-3] One of the principal functions of the... [Pg.202]

IP Boissel, WR Lee, SR Presnell, EE Cohen, HP Bunn. Erythropoietin stiaicture-function relationships. Mutant proteins that test a model of tertiary stiaicture. I Biol Chem 268 15983-15993, 1993. [Pg.305]

The kidneys are located on the posterior part of the abdomen on either side of the spine, below the diaphragm, and behind the liver and stomach. They are bean-shaped and weigh approximately 150 grams (0.33 lb) each. The primary function of the kidneys is excretion. They work to excrete waste products through a series of steps involving glomerular filtration, secretion, and reabsorption. The kidneys also have several endocrine (e.g., production of erythropoietin and renin) and metabolic (e.g., vitamin D activation and drug metabolism) functions. [Pg.831]

Cancer patients also may have concurrent iron deficiency secondary to erythropoietin use ( functional iron deficiency) or to cancer. Therefore, it is imperative that these patients have iron studies done to assess adequate iron stores needed to drive hematopoiesis. If the patient is determined to have sub-optimal iron stores or is iron deficient, then replacement either orally or intravenously may be necessary, in addition to the use of erythropoietin products. The use of iron in these patients is the same as discussed previously under Iron-Deficiency Anemia. ... [Pg.983]

Anemia of chronic kidney disease A decline in red blood cell production caused by a decrease in erythropoietin production by the progenitor cells of the kidney. As kidney function declines in chronic kidney disease, erythropoietin production also declines, resulting in decreased red blood cell production. Other contributing factors include iron deficiency and decreased red blood cell lifespan, caused by uremia. [Pg.1560]

JAKs and signal transducers and activators of transcription (STATs) are functionally analogous with IRS and PI3K. JAKs are physically associated with a cell surface receptor (e.g. for leptin, erythropoietin (EPO), growth factors or cytokines) STATs are free monomeric proteins within the cytosol but following phosphorylation by a JAK, individual proteins dimerize and then move into the nucleus of the cell where they control gene expression. [Pg.115]

To date, most approved protein-based drugs are for therapeutic or replacement therapies. They are recombinant versions of natural proteins such as insulin and erythropoietin. Their characteristics and functions are relatively well defined and known. The next phase of biopharmaceuticals, such as antibodies and vaccines, is more complex and requires more tests and characterizations. Controls for the reliability, contamination, and fidelity of expression systems will be high on the agenda in the coming decade. [Pg.362]

H. Wu, U. Klingmuller, A. Acurio, J. G. Hsiao, and H. F. Lodish, Functional interaction of erythropoietin and stem cell factor receptors is essential for erythroid colony formation,... [Pg.72]

In addition to their involvement in excretion and metabolism, the kidneys also have endocrine functions. They produce the hormones erythropoietin and calcitriol and play a decisive part in producing the hormone angiotensin II by releasing the enzyme renin. Renal prostaglandins (see p. 390) have a local effect on Na resorption. [Pg.330]

Silverberg DS, Wexler D, Blum M, et al. The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations. J Am Coll Cardiol. Jun 2000 35(7) 1737-1744. [Pg.142]

Gogu, S.R., Malter, J.S. and Agrawal, K.C. (1992) Zidovudine-induced blockade of the expression and function of the erythropoietin receptor. Biochemical Pharmacology, 44, 1009-1012. [Pg.435]

Bianco et al. [34] CNT-r proteins (fibrinogen, protein A, erythropoietin, and apolipoprotein) CNT-TEG-short protein complex quickly entered fibroblasts and other cells, sometimes migrated to their nuclei. Proteins executed their normal biological functions... [Pg.18]

Cytokines are proteins that serve as signal molecules in cell-cell communication, and as such, perform a central and very diverse function in growth and differentiation of an organism. Representatives of cytokines control proliferation, differentiation and function of cells of the immune system and of cells of the blood-forming system. Furthermore, they are involved in processes of inflammation and in the neuronal, hema-poetic and embryonal development of the organism. Known cytokines include the interleukins (IL), erythropoietin, growth hormone, interferons (INF) and tumor necrosis factor (TNF) (see Table 8.1). A review of cytokines and cytokine receptors is to be found in HiU and Treisman, (1995) Taniguchi et al., (1995) and Moutoussamy et al., (1998). [Pg.358]

An inverse log-linear relationship has been found between hematocrit and plasma erythropoietin in anemic patients with normal renal function. Patients with chronic renal failure have inappropriately low erythropoietin levels for their degree of anemia [10]. The severity of anemia correlates with the extent of renal dysfunction. Intravenous or subcutaneous recombinant human erythropoietin given three times a week is the treatment of choice. Some patients seem to do well on only one injection per week. One version of erythropoietin, Epocrit, marketed outside the United States, has been associated with pure red cell aplasia. [Pg.134]

Erythropoietin stimulates erythroid proliferation and differentiation by interacting with erythropoietin receptors on red cell progenitors. The erythropoietin receptor is a member of the JAK/STAT superfamily of cytokine receptors that use protein phosphorylation and transcription factor activation to regulate cellular function (see Chapter 2). Erythropoietin also induces release of reticulocytes from the bone marrow. Endogenous erythropoietin is primarily produced in the kidney. In response to tissue hypoxia, more erythropoietin is produced through an increased rate of transcription of the... [Pg.742]


See other pages where Erythropoietin function is mentioned: [Pg.494]    [Pg.364]    [Pg.302]    [Pg.410]    [Pg.668]    [Pg.935]    [Pg.100]    [Pg.94]    [Pg.95]    [Pg.306]    [Pg.125]    [Pg.419]    [Pg.506]    [Pg.571]    [Pg.62]    [Pg.435]    [Pg.280]    [Pg.367]    [Pg.267]    [Pg.227]    [Pg.20]    [Pg.206]    [Pg.644]    [Pg.269]    [Pg.65]    [Pg.194]    [Pg.612]    [Pg.733]    [Pg.26]    [Pg.42]    [Pg.31]    [Pg.128]   
See also in sourсe #XX -- [ Pg.281 ]




SEARCH



Erythropoietin

Erythropoietin structure function

© 2024 chempedia.info