Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymes transport mechanism

Care should be exercised when attempting to interpret in vivo pharmacological data in terms of specific chemical—biological interactions for a series of asymmetric compounds, particularly when this interaction is the only parameter considered in the analysis (10). It is important to recognize that the observed difference in activity between optical antipodes is not simply a result of the association of the compound with an enzyme or receptor target. Enantiomers differ in absorption rates across membranes, especially where active transport mechanisms are involved (11). They bind with different affinities to plasma proteins (12) and undergo alternative metaboHc and detoxification processes (13). This ultimately leads to one enantiomer being more available to produce a therapeutic effect. [Pg.237]

FIGURE 10.11 A mechanism for Na, K -ATPase. The model assumes two principal conformations, Ei and E9. Binding of Na ions to Ei is followed by phosphorylation and release of ADP. Na ions are transported and released and ions are bound before dephosphorylation of the enzyme. Transport and release of ions complete the cycle. [Pg.303]

It is not unusual for the full chemical potential of a reaction to be diminished by slower transport processes (i.e., to be transport limited). In fast liquid phase enzyme reactions, mechanical stirring rates can have a strong influence on the observed kinetics that may be limited by the rate of contacting of the reactants and enzymes. Most heterogeneous catalytic reactions take... [Pg.226]

The determination of the amino acid sequences of the sarcoplasmic reticulum Ca -ATPase [42] and of the closely related Na, K -ATPase [43,44] have opened a new era in the analysis of ion transport mechanisms. Since 1985, several large families of structurally related ion transport enzymes were discovered [3,34,45-50] that are the products of different genes. Within each family several isoenzymes may be produced from a single gene-product by alternative splicing (Table I). [Pg.58]

Acetylcholine synthesis and neurotransmission requires normal functioning of two active transport mechanisms. Choline acetyltransferase (ChAT) is the enzyme responsible for ACh synthesis from the precursor molecules acetyl coenzyme A and choline. ChAT is the neurochemical phenotype used to define cholinergic neurons although ChAT is present in cell bodies, it is concentrated in cholinergic terminals. The ability of ChAT to produce ACh is critically dependent on an adequate level of choline. Cholinergic neurons possess a high-affinity choline uptake mechanism referred to as the choline transporter (ChT in Fig. 5.1). The choline transporter can be blocked by the molecule hemicholinium-3. Blockade of the choline transporter by hemicholinium-3 decreases ACh release,... [Pg.129]

When applying any of these models it is crucial to understand the main transport mechanisms as well as the metabolic route and characterization of the activity of the transporter/enzyme involved. It is well recognized that the activities of carrier-mediated processes in Caco-2 cells are considerably lower than in vivo [20, 42, 48] therefore, it is crucial to extrapolate in vitro cell culture data to the in vivo situation with great care [18, 20, 42, 48], This is especially important when carrier-mediated processes are involved, as evidenced by a recent report which showed significant differences in gene expression levels for transporters, channels and metabolizing enzymes in Caco-2 cells than in human duodenum [48], If an animal model is used, then potential species differences must also be considered [18, 20, 45],... [Pg.510]

Certain enzymes shown to be present in myelin could be involved in ion transport. Carbonic anhydrase has generally been considered a soluble enzyme and a glial marker but myelin accounts for a large part of the membrane-bound form in brain. This enzyme may play a role in removal of carbonic acid from metabolically active axons. The enzymes 5 -nucleotidase and Na+, K+-ATPase have long been considered specific markers for plasma membranes and are found in myelin at low levels. The 5 -nucleotidase activity may be related to a transport mechanism for adenosine, and Na+, K+-ATPase could well be involved in transport of monovalent cations. The presence of these enzymes suggests that myelin may have an active role in ion transport in and out of the axon. In connection with this hypothesis, it is of interest that the PLP gene family may have evolved from a pore-forming polypeptide [9],... [Pg.67]

The copper transport function of ceruloplasmin has been documented in several reviews (e.g. see refs. 15, 42, 43) and a transport function established. The turnover of ceruloplasmin allows copper ions to move from the major sites of ceruloplasmin synthesis in liver cells [44,45] to peripheral tissues for incorporation into copper-dependent enzymes [46,47], but transport mechanisms may also be active which involve copper atoms in the intact protein. However, the complexity of the protein has made it difficult to determine which, if any, of the six integral copper atoms are involved in copper delivery or whether there exist additional... [Pg.59]

On the other hand, highly purified preparations (180-fold) obtained by Huennekens and his co-workers (H22) have been shown to be a hemo-protein with a molecular weight of approximately 185,000. With regard to these different results it is interesting that in RBC of individuals suffering from hereditary methemoglobinemia a complete lack of NAD diaphorase has been reported (S10, Sll) this would indicate the importance of an enzyme which contains FAD. The reasons for the discrepancies between the preparations obtained by two teams of investigators are not understood as yet. Perhaps they are implicated in the electron transport mechanisms or in the nature of a certain cofactor which is to be discussed now. [Pg.280]

Mehorta and coworkers (1989) observed that isolated fractions of brain and heart cells from rats orally administered 0.5-10 mg endrin/kg showed significant inhibition of Ca+2 pump activity and decreased levels of calmodulin, indicating disruption of membrane Ca+2 transport mechanisms exogenous addition of calmodulin restored Ca+2-ATPase activity. In vitro exposure of rat brain synaptosomes and heart sarcoplasmic reticuli decreased total and calmodulin-stimulated calcium ATPase activity with greater inhibition in brain preparations (Mehorta et al. 1989). However, endrin showed no inhibitory effects on the calmodulin-sensitive calcium ATPase activity when incubated with human erythrocyte membranes (Janik and Wolf 1992). In vitro exposure of rat brain synaptosomes to endrin had no effect on the activities of adenylate cyclase or 3, 5 -cyclic phosphodiesterase, two enzymes associated with synaptic cyclic AMP metabolism (Kodavanti et al. 1988). [Pg.74]

H-bonding potential Molecular weight/size PSA Intestinal metabolism Transport mechanisms Native surfactants Intestinal secretions, e.g. mucous, enzymes Intestinal blood/lymph flow Excipient effects... [Pg.37]

In cases where the depuration of HOCs from BMOs involves enzyme-mediated biotransformations (Eq. 7.4) or active transport mechanisms, and environmental concentrations are high (e.g. near a point source), depuration rates have been shown to follow Michaelis-Menten kinetics (Spade and Hamelink, 1985). Michaelis-Menten kinetics is elicited when an enzyme or active transport system is saturated with a chemical. This type of kinetics is characterized by lower values of keS at sites with high HOC concentrations. If k s are unchanged at high concentration sites, Michaelis-Menten kinetics will result in elevated BAFs. However, if chemical concentrations become toxic, finfish likely avoid the area and sessile organisms such as mussels may close their valves for extended periods (Huckins et al., 2004). [Pg.143]

The mechanisms of most drugs involve binding of the drug to a receptor. A receptor may be any macromolecular target, but the most common receptors are proteins. These include membrane proteins, enzymes, transporters, and structural elements. Some of the main receptors of interest for psychopharmacology are receptors for neurotransmitters and hormones, which show a high degree of selectivity. [Pg.79]

Synthesis. The synthases are present at the endomembrane system of the cell and have been isolated on membrane fractions prepared from the cells (5,6). The nucleoside diphosphate sugars which are used by the synthases are formed in the cytoplasm, and usually the epimerases and the other enzymes (e.g., dehydrogenases and decarboxylases) which interconvert them are also soluble and probably occur in the cytoplasm (14). Nevertheless some epimerases are membrane bound and this may be important for the regulation of the synthases which use the different epimers in a heteropolysaccharide. This is especially significant because the availability of the donor compounds at the site of the transglycosylases (the synthases) is of obvious importance for control of the synthesis. The synthases are located at the lumen side of the membrane and the nucleoside diphosphate sugars must therefore cross the membrane in order to take part in the reaction. Modulation of this transport mechanism is an obvious point for the control not only for the rate of synthesis but for the type of synthesis which occurs in the particular lumen of the membrane system. Obviously the synthase cannot function unless the donor molecule is transported to its active site and the transporters may only be present at certain regions within the endomembrane system. It has been observed that when intact cells are fed radioactive monosaccharides which will form and label polysaccharides, these cannot always be found at all the membrane sites within the cell where the synthase activities are known to occur (15). A possible reason for this difference may be the selection of precursors by the transport mechanism. [Pg.5]

This chapter is divided into three sections. The first section covers renal tubule transport mechanisms. The nephron is divided structurally and functionally into several segments (Figure 15-1, Table 15-1). Many diuretics exert their effects on specific membrane transport proteins in renal tubular epithelial cells. Other diuretics exert osmotic effects that prevent water reabsorption (mannitol), inhibit enzymes (acetazolamide), or interfere with hormone receptors in renal epithelial cells (aldosterone receptor blockers). The physiology of each segment is closely linked to the basic pharmacology of the drugs acting there, which is discussed in the second section. Finally, the clinical applications of diuretics are discussed in the third section. [Pg.320]

However, active uptake mechanisms have now been found in some bacteria for various xenobiotic organic anions. These include 4-chlorobenzoate (Groenewegen et al., 1990), 4-toluene sulfonate (Locher et al., 1993), 2,4-D (Leveau et al., 1998), mecoprop and dichlorprop (Zipper et al., 1998), and even aminopolycarboxylates (Egli, 2001). Such active uptake appears to be driven by the proton motive force (i.e., accumulation of protons in bacterial cytoplasm). These transport mechanisms exhibit saturation kinetics (e.g., Zipper et al., 1998), and so their quantitative treatment is the same as other enzyme-limited metabolic processes (discussed below as Michaelis-Menten cases). [Pg.738]

Finally, it is possible that the glycoproteins, pectins, and hemicellu-loses are formed and cross-linked in blocks, and transported to the cell wall, where they react, possibly by non-enzyme-catalyzed mechanisms, with cellulose microfibrils. Such a membrane would presuppose that the... [Pg.337]


See other pages where Enzymes transport mechanism is mentioned: [Pg.159]    [Pg.159]    [Pg.267]    [Pg.171]    [Pg.175]    [Pg.209]    [Pg.246]    [Pg.296]    [Pg.130]    [Pg.455]    [Pg.98]    [Pg.507]    [Pg.539]    [Pg.757]    [Pg.215]    [Pg.913]    [Pg.230]    [Pg.300]    [Pg.491]    [Pg.207]    [Pg.235]    [Pg.308]    [Pg.316]    [Pg.371]    [Pg.145]    [Pg.83]    [Pg.397]    [Pg.214]    [Pg.193]    [Pg.450]    [Pg.206]    [Pg.145]    [Pg.913]    [Pg.758]   
See also in sourсe #XX -- [ Pg.815 ]




SEARCH



Enzyme mechanism

Enzyme/transporter

Transport mechanical

Transport mechanisms

Transporters mechanisms

© 2024 chempedia.info