Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme-catalyzed reactions substrate binding

How do enzymes function The term substrate is used to refer to a reactant in an enzyme-catalyzed reaction. Substrates bind to specific sites on enzyme molecules, usually pockets or crevices. The pocket to which the substrates bind is called the active site of the enzyme. After the substrates bind to the active site, the active site changes shape slightly to fit more tightly around the substrates. This recognition process is called induced fit. In the diagram in Figure 24-5, you ll see that the shapes of the substrates must fit... [Pg.778]

The activities of proteins are also regulated by the concentrations of a variety of other molecules which they bind noncovalently. The velocity of processes catalyzed by enzymes increases with substrate concentration until concentrations at which binding sites are saturated are reached. Conversely, competitive inhibitors that bind at the active site and block substrate binding reduce rates of protein catalyzed reactions, with the magnitude of the inhibition increasing with the concentration of competitive inhibitor. The ability of the products of many enzyme catalyzed reactions to bind at the active site provides a simple means of feedback regulation. When substrate concentrations are low and product concentrations are high, enzymatic activity will be diminished. Conversely, when substrate concen-... [Pg.15]

Enzymes are basically specialty proteins (qv) and consist of amino acids, the exact sequence of which determines the enzyme stmcture and function. Although enzyme molecules are typically very large, most of the chemistry involving the enzyme takes place in a relatively small region known as the active site. In an enzyme-catalyzed reaction, binding occurs at the active site to one of the molecules involved. This molecule is called the substrate. Enzymes are... [Pg.107]

Inhibition The decrease of the rate of an enzyme-catalyzed reaction by a chemical compound including substrate analogues. Such inhibition may be competitive with the substrate (binding at die active site of die enzyme) or non-competitive (binding at an allosteric site). [Pg.904]

Figure 1.3. Schematic representation of an enzyme-catalyzed reaction. Enzymes often match the shape of the substrates they bind to, or the transition state of the reaction they catalyze. Enzymes are highly efficient catalysts and represent a great source of inspiration for designing technical catalysts. Figure 1.3. Schematic representation of an enzyme-catalyzed reaction. Enzymes often match the shape of the substrates they bind to, or the transition state of the reaction they catalyze. Enzymes are highly efficient catalysts and represent a great source of inspiration for designing technical catalysts.
This equation is fundamental to all aspects of the kinetics of enzyme action. The Michaelis-Menten constant, KM, is defined as the concentration of the substrate at which a given enzyme yields one-half of its maximum velocity. is the maximum velocity, which is the rate approached at infinitely high substrate concentration. The Michaelis-Menten equation is the rate equation for a one-substrate enzyme-catalyzed reaction. It provides the quantitative calculation of enzyme characteristics and the analysis for a specific substrate under defined conditions of pH and temperature. KM is a direct measure of the strength of the binding between the enzyme and the substrate. For example, chymotrypsin has a Ku value of 108 mM when glycyltyrosinylglycine is used as its substrate, while the Km value is 2.5 mM when N-20 benzoyltyrosineamide is used as a substrate... [Pg.220]

The AG for binding the substrate and the transition state is shown as a difference between the energies of the ES complex and E + S. The AG for binding the transition state is shown as a difference between the energies of the E TS complex and E + TS. If the transition state binds tighter (bigger AG) than the substrate, the enzyme-catalyzed reaction must have a lower activation energy. [Pg.104]

What about reactions of the type A + B — C This is a second-order reaction, and the second-order rate constant has units of M min-1. The enzyme-catalyzed reaction is even more complicated than the very simple one shown earlier. We obviously want to use a second-order rate constant for the comparison, but which one There are several options, and all types of comparisons are often made (or avoided). For enzyme-catalyzed reactions with two substrates, there are two Km values, one for each substrate. That means that there are two kcJKm values, one for each substrate. The kcJKA5 in this case describes the second-order rate constant for the reaction of substrate A with whatever form of the enzyme exists at a saturating level B. Cryptic enough The form of the enzyme that is present at a saturating level of B depends on whether or not B can bind to the enzyme in the absence of A.6 If B can bind to E in the absence of A, then kcJKA will describe the second-order reaction of A with the EB complex. This would be a reasonably valid comparison to show the effect of the enzyme on the reaction. But if B can t bind to the enzyme in the absence of A, kcat/KA will describe the second-order reaction of A with the enzyme (not the EB complex). This might not be quite so good a comparison. [Pg.122]

The use of the symbol E in 5.1 for the environment had a double objective. It stands there for general environments, and it also stands for the enzyme considered as a very specific environment to the chemical interconversion step [102, 172], In the theory discussed above catalysis is produced if the energy levels of the quantum precursor and successor states are shifted below the energy value corresponding to the same species in a reference surrounding medium. Both the catalytic environment E and the substrates S are molded into complementary surface states to form the complex between the active precursor complex Si and the enzyme structure adapted to it E-Si. In enzyme catalyzed reactions the special productive binding has been confussed with the possible mechanisms to attain it lock-key represents a static view while the induced fit concept... [Pg.332]

Enzyme-catalyzed reactions can be described at least at two distinct levels. At the basic level, the interconversion of substrates by enzymes is governed by a set of elementary steps, including enzyme substrate binding, isomerization and dissociation steps, see Fig. 6 for a schematic depiction. Assuming the intracellular medium is an ideal solution, each elementary step is governed by mass-action kinetics, that is, the reaction rates are proportional to the probability of collision of the reactants. For a reaction of the type... [Pg.128]

A kinetic description of large reaction networks entirely in terms of elementary reactionsteps is often not suitable in practice. Rather, enzyme-catalyzed reactions are described by simplified overall reactions, invoking several reasonable approximations. Consider an enzyme-catalyzed reaction with a single substrate The substrate S binds reversibly to the enzyme E, thereby forming an enzyme substrate complex [/iS ]. Subsequently, the product P is irreversibly dissociated from the enzyme. The resulting scheme, named after L. Michaelis and M. L. Menten [152], can be depicted as... [Pg.130]

Symbols for substrates and products, respectively, in multisubstrate enzyme-catalyzed reactions. In all ordered reaction mechanisms, A represents the first substrate to bind, B is the second, eta, whereas P denotes the first product to be released, Q represents the second, eta See Cleland Nomenclature... [Pg.1]

Alberty analyzed the anion effect on pH-rate data. He first considered a one-substrate, one-product enzyme-catalyzed reaction in which all binding interactions were rapid equilibrium phenomena. He obtained rate expressions for effects on F ax and thereby demonstrating how an anion might alter a pH-rate profile. He also considered how anions may act as competitive inhibitors. The effect of anions on alcohol dehydrogenase has also been investigated. Chloride ions appear to affect the on- and off-rate constants for NAD and NADH binding. See also pH Studies Activation Optimum pH... [Pg.58]

An enzyme-catalyzed reaction involving two substrates and one product. There are two basic Bi Uni mechanisms (not considering reactions containing abortive complexes or those catagorized as Iso mechanisms). These mechanisms are the ordered Bi Uni scheme, in which the two substrates bind in a specific order, and the random Bi Uni mechanism, in which either substrate can bind first. Each of these mechanisms can be either rapid equilibrium or steady-state systems. [Pg.94]

Many of the 60 known reactions catalyzed by monoclonal antibodies involve kinetically favored reactions e.g., ester hydrolysis), but abzymes can also speed up kinetically disfavored reactions. Stewart and Benkovic apphed transition-state theory to analyze the scope and limitations of antibody catalysis quantitatively. They found the observed rate accelerations can be predicted from the ratio of equilibrium binding constants of the reaction substrate and the transition-state analogue used to raise the antibody. This approach permitted them to rationalize product selectivity displayed in antibody catalysis of disfavored reactions, to predict the degree of rate acceleration that catalytic antibodies may ultimately afford, and to highlight some differences between the way that they and enzymes catalyze reactions. [Pg.115]

A system for describing kinetic mechanisms for enzyme-catalyzed reactions . Reactants (ie., substrates) are symbolized by the letters A, B, C, D, eto., whereas products are designated by P, Q, R, S, etc. Reaction schemes are also identified by the number of substrates and products utilized (i.e.. Uni (for one), Bi (two), Ter (three occasionally Tri), Quad (four), Quin (five), etc. Thus, a two-substrate, three-product enzyme-catalyzed reaction would be a Bi Ter system. In addition, reaction schemes are identified by the pattern of substrate addition to the enzyme s active site as well as the release of products. For a two-substrate, one-product scheme in which either substrate can bind to the free enzyme, the enzyme scheme is designated a random Bi Uni mechanism. If the substrates bind in a distinct order (note that, in such cases, A binds before B for ordered multiproduct release, P is released prior to Q, etc.), the scheme would be ordered Bi Uni. If the binding scheme is different than the release of product, then that information should also be provided for example, a two-substrate, two-product reaction in which the substrates bind to the enzyme in an ordered fashion whereas the products are released randomly would be designated ordered on, random off Bi Bi scheme. If one or more Theorell-Chance steps are present, that information is also given (e.g., ordered Bi Bi-(Theorell-Chance)), with the prefixes included if there is more than one Theorell-Chance step. [Pg.153]

The equilibrium constant of an enzyme-catalyzed reaction can depend greatly on reaction conditions. Because most substrates, products, and effectors are ionic species, the concentration and activity of each species is usually pH-dependent. This is particularly true for nucleotide-dependent enzymes which utilize substrates having pi a values near the pH value of the reaction. For example, both ATP" and HATP may be the nucleotide substrate for a phosphotransferase, albeit with different values. Thus, the equilibrium constant with ATP may be significantly different than that of HATP . In addition, most phosphotransferases do not utilize free nucleotides as the substrate but use the metal ion complexes. Both ATP" and HATP have different stability constants for Mg +. If the buffer (or any other constituent of the reaction mixture) also binds the metal ion, the buffer (or that other constituent) can also alter the observed equilibrium constant . ... [Pg.270]

The ratio of the turnover number (i.e., Emax/[Etotai]) to the Xn, value of a substrate in a particular enzyme-catalyzed reaction. When kcat and are the true steady-state parameters, this ratio (or the ratio Emax/T m) is an excellent gauge of the specificity of the enzyme for that substrate. The larger the ratio, the more effective that substrate is used by the enzyme under study. In addition, the effects of a number of mechanistic probes of enzyme action on this ratio (for example, pH effects, isotope effects, temperature effects, the influence of various modifiers, etc.) can provide much information on the catalytic and binding mechanism. See... [Pg.395]

An essential aspect to understanding the influence of metal ions on enzyme-catalyzed reactions is the knowledge of how tight different metal ions bind to a wide variety of substrates (particularly nucleotides and other phosphoryl-containingmolecular entities), products, and effectors and that binding phenomena are altered by the experimental conditions (e.g., the effects of pH, temperature, ionic strength, etc.). This necessitates the experimental determination of the stability constant (an association constant) for the metal ion-hgand complex. O Sulhvan and Smithers have reviewed the theory and the various techniques for such determinations and have provided values for many of the more common, biochemically relevant complexes. [Pg.453]

A sequential enzyme-catalyzed reaction mechanism in which two substrates react to form two products and in which there is a preferred order in the binding of substrates and release of products. Several enzymes have been reported to have this type of binding mechanism, including alcohol dehydrogenase , carbamate kinase , lactate dehydrogenase , and ribitol dehydrogenase. ... [Pg.524]

A sequential enzyme-catalyzed reaction scheme in which two substrates (A and B) react and form a single product and in which the substrates bind to the enzyme in a distinct order (i.e., only A and the product P can bind to the free enzyme). The reverse scheme of this mechanism is the ordered Uni Bi system. (See also Ordered Uni Bi Mechanism)... [Pg.526]

A three-substrate, three-product enzyme-catalyzed reaction scheme in which two substrates (A and B) can bind in any order but the third substrate (C) can only bind... [Pg.601]

A three-substrate, three-product enzyme-catalyzed reaction scheme in which a particular substrate (B) has to bind second, but the other two substrates (A and C) can either bind first or third. Then, following the catalytic event, a particular product (Q) has to be the second product released, but the other two products (P and R) can be either the first or third product released. See Multisubstrate Mechanisms... [Pg.601]


See other pages where Enzyme-catalyzed reactions substrate binding is mentioned: [Pg.309]    [Pg.505]    [Pg.986]    [Pg.241]    [Pg.1028]    [Pg.361]    [Pg.735]    [Pg.51]    [Pg.735]    [Pg.428]    [Pg.504]    [Pg.505]    [Pg.90]    [Pg.64]    [Pg.30]    [Pg.35]    [Pg.326]    [Pg.144]    [Pg.30]    [Pg.109]    [Pg.326]    [Pg.160]    [Pg.248]    [Pg.371]    [Pg.422]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Binding reactions

Enzyme-catalyzed

Enzyme-catalyzed reactions

Enzymes binding

Enzymes catalyze

Enzymes enzyme-substrate reactions

Substrate binding

Substrate catalyzed reaction

Substrate reaction

Substrate-binding reactions

Substrate-enzyme binding

Substrates enzymes

© 2024 chempedia.info