Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymatic examples

Hydrolytic reactions can also be performed at the start as well as oxidative and reductive ones They can be earned out by wet chemistry or enzymatically Examples are listed in Table 11... [Pg.62]

Higher order terms can be obtained by writing the inner and outer solutions as expansions in powers of e and solving the sets of equations obtained by comparing coefficients. This enzymatic example is treated extensively in [73] and a connection with the theory of materials with memory is made in [82]. The essence of the singular perturbation analysis, as this method is called, is that there are two (or more in some extensions) time (or spatial) scales involved. If the initial point lies in the domain of attraction of steady states of the fast variables and these are unique and stable, the state of the system will rapidly pass to the stable manifold of the slow variables and, one might... [Pg.63]

Other novel enzymatic examples include the synthesis of cyclic imine saccharides through the use of the fructose diphosphate aldolase (114). This enzyme has also been used for the synthesis of bicyclic carbohydrates... [Pg.230]

This chapter summarizes (i) the intellectual problem associated with understanding the rates of these reactions, i.e., the required reduction in the kinetic barrier for proton transfer from carbon to an active site general base so that kcat will not be limited by the rate of this overall reaction (ii) the active site structural features that allow the necessary reduction in kinetic barrier and (iii) specific enzymatic examples of how these strategies are employed. [Pg.1108]

I 70 Nuclear Tunneling in the Condensed Phase Hydrogen Tranter in Enzyme Reactions Table 10.4. Enzymatic examples where perturbations lead to a decrease in Ai/A2. [Pg.1272]

Examples of enantiomorphogenic selectivity are provided by the pig liver esterase (PLE) catalyzed hydrolysis of diester 45 to give, by way of intermediate [46], aldehyde 47 (in preference to 48). A non-enzymatic example is provided by the reaction of 2-(2-bromoallyl)-l,3-cyclopentadiene (49) with 2-bromoacrolein (50) in the presence of 10 mol % of catalyst 51 to give 52 (99% ee, exo/endo 99 1), en route to key gibberellic acid precursor 53. ... [Pg.50]

Finally, we end the chapter with a discussion of nature s catalysts enzymes. In fact, we allude to enzymes throughout the chapter. The general manner in which enzymes catalyze reactions is still a matter of debate, and so we present several theories. Our examination of enzymes is in preparation for a few specific enzymatic examples given in Chapters 10 and 11 as highlights for organic reaction mechanisms. Enzymes also provide an excellent setting in which to discuss Michaelis-Menton kinetics, the most common kinetic scenario used for catalysis. We also return to our analysis of the power of changing the thermodynamic reference state to examine reactivity, and show the manner in which an enzyme becomes "perfect". [Pg.489]

The conventional electrochemical reduction of carbon dioxide tends to give formic acid as the major product, which can be obtained with a 90% current efficiency using, for example, indium, tin, or mercury cathodes. Being able to convert CO2 initially to formates or formaldehyde is in itself significant. In our direct oxidation liquid feed fuel cell, varied oxygenates such as formaldehyde, formic acid and methyl formate, dimethoxymethane, trimethoxymethane, trioxane, and dimethyl carbonate are all useful fuels. At the same time, they can also be readily reduced further to methyl alcohol by varied chemical or enzymatic processes. [Pg.220]

The bactericidal and enzymatic action of dyes, particularly of vinyl derivatives of 3,4,5-substituted thiazolium, for example, 45 (Scheme 70) (139), have been systematically studied to know more about the basic mechanisms involved (140). [Pg.80]

Flow injection analysis has also found numerous applications in the analysis of clinical samples, using both enzymatic and nonenzymatic methods. A list of selected examples is given in Table 13.3. [Pg.656]

Fructose—Dextrose Separation. Emctose—dextrose separation is an example of the appHcation of adsorption to nonhydrocarbon systems. An aqueous solution of the isomeric monosaccharide sugars, C H 2Dg, fmctose and dextrose (glucose), accompanied by minor quantities of polysaccharides, is produced commercially under the designation of "high" fmctose com symp by the enzymatic conversion of cornstarch. Because fmctose has about double the sweetness index of dextrose, the separation of fmctose from this mixture and the recycling of dextrose for further enzymatic conversion to fmctose is of commercial interest (see Sugar Sweeteners). [Pg.300]

Certain factors and product precursors are occasionally added to various fermentation media to iacrease product formation rates, the amount of product formed, or the type of product formed. Examples iaclude the addition of cobalt salts ia the vitamin fermentation, and phenylacetic acid and phenoxyacetic acid for the penicillin G (hen ylpenicillin) and penicillin V (phenoxymethylpenicillin) fermentations, respectively. Biotin is often added to the citric acid fermentation to enhance productivity and the addition of P-ionone vastly iacreases beta-carotene fermentation yields. Also, iaducers play an important role ia some enzyme production fermentations, and specific metaboHc inhibitors often block certain enzymatic steps that result in product accumulation. [Pg.180]

Exceptions to the simple definition of an essential oil are, for example, gadic oil, onion oil, mustard oil, or sweet birch oils, each of which requires enzymatic release of the volatile components before steam distillation. In addition, the physical process of expression, appHed mostly to citms fmits such as orange, lemon, and lime, yields oils that contain from 2—15% nonvolatile material. Some flowers or resinoids obtained by solvent extraction often contain only a small portion of volatile oil, but nevertheless are called essential oils. Several oils are dry-distiUed and also contain a limited amount of volatiles nonetheless they also are labeled essential oils, eg, labdanum oil and balsam oil Pern. The yield of essential oils from plants varies widely. Eor example, nutmegs yield 10—12 wt % of oil, whereas onions yield less than 0.1% after enzymatic development. [Pg.296]

The primary disadvantage of the conjugate addition approach is the necessity of performing two chiral operations (resolution or asymmetric synthesis) ia order to obtain exclusively the stereochemicaHy desired end product. However, the advent of enzymatic resolutions and stereoselective reduciag agents has resulted ia new methods to efficiently produce chiral enones and CO-chain synthons, respectively (see Enzymes, industrial Enzymes in ORGANIC synthesis). Eor example, treatment of the racemic hydroxy enone (70) with commercially available porciae pancreatic Hpase (PPL) ia vinyl acetate gave a separable mixture of (5)-hydroxyenone (71) and (R)-acetate (72) with enantiomeric excess (ee) of 90% or better (204). [Pg.162]

Selenocysteine was identified in 1976 (57) in a protein produced by Clostridium stricklandii, and it is thought to be the form in which selenium is incorporated, stoichiometricaHy, into proteins. Studies with rats show that over 80% of the dietary selenium given them is incorporated into proteins, thus selenocysteine takes on metaboHc importance. Selenoproteins having known enzymatic activities contain selenocysteine at the active sites. Two other forms of metabohc selenium are recognized methylated selenium compounds are synthesized for excretion, and selenium is incorporated into some transfer ribonucleic acids (tRNAs) in cultured cells (58). Some of the more important seleno-compounds are Hsted in Table 4. Examples of simple ring compounds are shown in Eigure 4. [Pg.333]

The reductive dechlorination of chlorinated aromatics is more compHcated in that the initial dechlorination of more highly chlorinated compounds may be either chemical or enzymatic, eg, PGP, whereas the dechlorination of less chlorinated compounds or dechlorinated products is typically enzymatic. For example, the first dechlorination of 2,4-dichlorophenol (ortho position) can occur either chemically or enzymatically the second dechlorination (para position) is enzymatic (eq. 10). [Pg.219]

Enzymatic acylation reactions offer considerable promise in the synthesis of specific ester derivatives of sucrose. For example, reaction of sucrose with an activated alkyl ester in /V, /V- dim ethyl form am i de in the presence of subtilisin gave 1 -0-butyrylsucrose, which on further treatment with an activated fatty acid ester in acetone in the presence of Hpase C. viscosum produced the 1, 6-diester derivative (71,72). [Pg.34]

Other examples illustrating the effect of substituent distribution on properties include (/) enzymatic stabiUty of hydroxyethjlceUulose (16,17) (2) salt compatibihty of carboxymethylceUulose (18,19) and (J) thermal gelation properties of methylceUulose (20). The enzymatic stabUity of hydroxyethylceUulose is an example where the actual position of the substituents within the anhydroglucose units is considered important. Increasing substitution at the C2 position promotes better resistance toward enzymatic cleavage of the polymer chain. Positional distribution is also a factor in the other two examples. [Pg.272]

Increasingly, biochemical transformations are used to modify renewable resources into useful materials (see Microbial transformations). Fermentation (qv) to ethanol is the oldest of such conversions. Another example is the ceU-free enzyme catalyzed isomerization of glucose to fmctose for use as sweeteners (qv). The enzymatic hydrolysis of cellulose is a biochemical competitor for the acid catalyzed reaction. [Pg.450]

The second most important group of immobilized enzymes is stiU the penicillin G and V acylases. These are used in the pharmaceutical industry to make the intermediate 6-aminopenici11anic acid [551-16-6] (6-APA), which in turn is used to manufacture semisynthetic penicillins, in particular ampicilHn [69-53-4] and amoxicillin [26787-78-0]. This is a remarkable example of how a complex chemical synthesis can be replaced with a simple enzymatic one ... [Pg.291]

Many products made by fermentation are also based on the conversion of starch. Some examples of the use of enzymatically hydrolyzed starches are the production of alcohol, ascorbic acid, enzymes, lysine, and penicillin. [Pg.296]

Another class of therapeutic agents is used for the treatment of certain genetic diseases or other enzymatic disorders caused by the dysfunction or absence of one particular enzyme. This often leads to an unwanted accumulation or imbalance of metaboUtes in the organism. Eor example, some anticonvulsive agents are inhibitors for y-aminobutyric acid aminotransferase [9037-67-6]. An imbalance of two neurotransmitters, glutamate and y-aminobutyric acid, is responsible for the symptoms. Inhibition of the enzyme leads to an increase of its substrate y-aminobutyric acid, decreasing the imbalance and subsequently relieving the symptoms of the disease. [Pg.318]

A number of examples of monoacylated diols produced by enzymatic hydrolysis of prochiral carboxylates are presented in Table 3. PLE-catalyzed conversions of acycHc diesters strongly depend on the stmcture of the substituent and are usually poor for alkyl derivatives. Lipases are much less sensitive to the stmcture of the side chain the yields and selectivity of the hydrolysis of both alkyl (26) and aryl (24) derivatives are similar. The enzyme selectivity depends not only on the stmcture of the alcohol, but also on the nature of the acyl moiety (48). [Pg.335]

Cychc alcohols are excellent targets for enantioselective enzymatic acylations. For example, acylation of (65) with vinyl acetate catalyzed by Hpase SAM-II gives the (R),(3)-ester with 95% ee (81). Similarly (66), which is a precursor for seratonin uptake inhibitor, is resolved in a high yield and selectivity with Amano Hpase P (82). The prostaglandin synthon (67) is resolved by the same method into the optically pure alcohol in 35% yield (83). [Pg.340]


See other pages where Enzymatic examples is mentioned: [Pg.1395]    [Pg.529]    [Pg.600]    [Pg.1395]    [Pg.529]    [Pg.600]    [Pg.53]    [Pg.202]    [Pg.167]    [Pg.375]    [Pg.168]    [Pg.202]    [Pg.463]    [Pg.486]    [Pg.230]    [Pg.201]    [Pg.26]    [Pg.27]    [Pg.301]    [Pg.439]    [Pg.21]    [Pg.71]    [Pg.86]    [Pg.393]    [Pg.7]    [Pg.445]    [Pg.141]    [Pg.311]    [Pg.312]    [Pg.321]   
See also in sourсe #XX -- [ Pg.395 ]




SEARCH



Enzymatic analysis examples

Enzymatic stripping, examples

Examples of Electrochemical Enzymatic Biosensors for Food Analysis

Examples of Enzymatic Conversions

© 2024 chempedia.info