Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Entrapment functionalization

FIG. 18 Schematic drawing of a liposome with entrapped functional molecules, coated with an S-layer lattice, that can be used as immobilization matrix for functional molecules. Alternatively, liposomes can be coated with genetically modified S-layer subunits incorporating functional domains. (Modified from Ref. 59.) (b) Electron micrograph of a freeze-etched preparation of an S-layer-coated liposome (bar, 100 nm). [Pg.373]

Another way to functionalize depositions, is to entrap functional molecules in polypyrrole. Incorporation of functional molecules during electrochemical polymerization and the application of so prepared films to sensors have been studied by many workers (27). By means of area-selective deposition much more complicated functional depositions can be prepared on an electrode. The authors have shown that organic dyes (an example of functional molecules) are incorporated in the process of... [Pg.380]

Microbial methodologies culture enrichment and microbial strain improvement, metabolic engineering, integration of multi-pathways in cells, cell entrapment, functional genomics... [Pg.8]

Sol-gel films can also be co-electrodeposited with electrochemically inert materials by embedding them in the matrix. The composite films may improve the performance of the sol-gel films in corrosion protection, electroanalysis, and so on. Furthermore, the species that are co-electrodeposited may introduce enormous functionalities into the films leading to various applications. In this case, the sol-gel film serves as a platform for entrapping functional materials. This will be introduced in detail in the following section based on the applications of the films. Here, we illustrate a typical system where gold nanopartides (Au NPs) were co-electrodeposited with silica sol-gel films. [Pg.393]

Functionalized conducting monomers can be deposited on electrode surfaces aiming for covalent attachment or entrapment of sensor components. Electrically conductive polymers (qv), eg, polypyrrole, polyaniline [25233-30-17, and polythiophene/23 2JJ-J4-j5y, can be formed at the anode by electrochemical polymerization. For integration of bioselective compounds or redox polymers into conductive polymers, functionalization of conductive polymer films, whether before or after polymerization, is essential. In Figure 7, a schematic representation of an amperomethc biosensor where the enzyme is covalendy bound to a functionalized conductive polymer, eg, P-amino (polypyrrole) or poly[A/-(4-aminophenyl)-2,2 -dithienyl]pyrrole, is shown. Entrapment of ferrocene-modified GOD within polypyrrole is shown in Figure 7. [Pg.46]

There are many laboratory methods for testing the relative merits of one defoamer against another. It is a simple matter to measure foam height as a function of time to compare the performance of various foam surfactants and defoamers. Unfortunately, this simplicity has led to a wide variety of methods and conditions used with no standard procedure that would make the measurement of foaminess as characteristic of a solution as its surface tension or viscosity. It has been suggested that the time an average bubble remains entrapped ia the foam is such a quantity (49), but very few workers ia the defoamer iadustry have adopted this proposal. Ia practice, a wide variety of methods are used that geaerally fall iato oae of five maia categories ... [Pg.467]

Water-Holding Capacity (WHC). AU polysaccharides are hydrophilic and hydrogen bond to variable amounts of water. HydratabUity is a function of the three-dimensional stmcture of the polymer (11) and is kifluenced by other components ki the solvent. Fibrous polymers and porous fiber preparations also absorb water by entrapment. The more highly crystalline fiber components are more difficult to hydrate and have less tendency to sweU. Stmctural features and other factors, including grinding, that decrease crystallinity or alter stmcture, may iacrease hydratioa capacity and solubUity. [Pg.70]

Other immobilization methods are based on chemical and physical binding to soHd supports, eg, polysaccharides, polymers, glass, and other chemically and physically stable materials, which are usually modified with functional groups such as amine, carboxy, epoxy, phenyl, or alkane to enable covalent coupling to amino acid side chains on the enzyme surface. These supports may be macroporous, with pore diameters in the range 30—300 nm, to facihtate accommodation of enzyme within a support particle. Ionic and nonionic adsorption to macroporous supports is a gentle, simple, and often efficient method. Use of powdered enzyme, or enzyme precipitated on inert supports, may be adequate for use in nonaqueous media. Entrapment in polysaccharide/polymer gels is used for both cells and isolated enzymes. [Pg.291]

Erythrocyte Entrapment of Enzymes. Erythrocytes have been used as carriers for therapeutic enzymes in the treatment of inborn errors (249). Exogenous enzymes encapsulated in erythrocytes may be useful both for dehvery of a given enzyme to the site of its intended function and for the degradation of pathologically elevated, diffusible substances in the plasma. In the use of this approach, it is important to determine that the enzyme is completely internalized without adsorption to the erythrocyte membrane. Since exposed protein on the erythrocyte surface may ehcit an immune response following repeated sensitization with enzyme loaded erythrocytes, an immunologic assessment of each potential system in animal models is required prior to human trials (250). [Pg.312]

Dendrimer micelles of this type have been formulated as drug delivery vehicles. Dendrimers with a hydrophobic interior have been used to entrap a hydrophobic drug such as indomethacin. This is retained because of the hydrophilic periphery containing ethylene glycol functional groups, and is released slowly because of the collapsed configuration of the interior, through which molecular diffusion is obstructed. [Pg.138]

Even entrapment of entire cells within reversed micelles without loss of their functionality has been achieved. For example, mitochondria and bacteria (Actinobacter cal-coaceticus, Escherichia coli, Corynebacterium equi) have been successfully solubilized in a microemulsion consisting of isopropyl pahnitate, polyoxyethylene sorbitan trioleate [162], Enhanced hydrogen photoproduction by the bacterium Rhodopseudomonas sphaeroides or by the coupled system Halobacterium halobium and chloroplasts organelles entrapped inside the aqueous core of reversed micelles with respect to the same cells suspended in normal aqueous medium has been reported [183,184],... [Pg.489]

This subject can be considered in terms of five different types of molecules or materials (a) biologically inert, water-insoluble polymers (b) water-insoluble polymers that bear biologically active surface groups (c) water-swellable polymeric gels, or amphiphilic polymers that function as membranes (d) water-insoluble but bioerodable polymers that erode in aqueous media with concurrent release of a linked or entrapped bioactive molecule and (e) water-soluble polymers that bear bioactive agents as side groups. [Pg.259]


See other pages where Entrapment functionalization is mentioned: [Pg.373]    [Pg.71]    [Pg.144]    [Pg.211]    [Pg.302]    [Pg.373]    [Pg.71]    [Pg.144]    [Pg.211]    [Pg.302]    [Pg.319]    [Pg.33]    [Pg.256]    [Pg.409]    [Pg.432]    [Pg.173]    [Pg.469]    [Pg.240]    [Pg.267]    [Pg.286]    [Pg.90]    [Pg.355]    [Pg.156]    [Pg.265]    [Pg.41]    [Pg.87]    [Pg.832]    [Pg.708]    [Pg.56]    [Pg.57]    [Pg.284]    [Pg.562]    [Pg.259]    [Pg.453]    [Pg.581]    [Pg.180]    [Pg.452]    [Pg.862]    [Pg.21]    [Pg.65]   
See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Entrapment

© 2024 chempedia.info