Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enhanced mass spectrometry

Figure 3.16. Comparison of mass spectra obtained using precursor ion (right) and enhanced mass spectrometry (left) scans. Figure 3.16. Comparison of mass spectra obtained using precursor ion (right) and enhanced mass spectrometry (left) scans.
Chang C-C and Winograd N 1989 Shadow-cone-enhanced secondary-ion mass-spectrometry studies of Ag(110) Rhys. Rev. B 39 3467... [Pg.319]

Particularly in mass spectrometry, where discharges are used to enhance or produce ions from sample materials, mostly coronas, plasmas, and arcs are used. The gas pressure is normally atmospheric, and the electrodes are arranged to give nonuniform electric fields. Usually, coronas and plasmas are struck between electrodes that are not of similar shapes, complicating any description of the discharge because the resulting electric-field gradients are not uniform between the electrodes. [Pg.38]

In many applications in mass spectrometry (MS), the sample to be analyzed is present as a solution in a solvent, such as methanol or acetonitrile, or an aqueous one, as with body fluids. The solution may be an effluent from a liquid chromatography (LC) column. In any case, a solution flows into the front end of a mass spectrometer, but before it can provide a mass spectrum, the bulk of the solvent must be removed without losing the sample (solute). If the solvent is not removed, then its vaporization as it enters the ion source would produce a large increase in pressure and stop the spectrometer from working. At the same time that the solvent is removed, the dissolved sample must be retained so that its mass spectrum can be measured. There are several means of effecting this differentiation between carrier solvent and the solute of interest, and thermospray is just one of them. Plasmaspray is a variant of thermospray in which the basic method of solvent removal is the same, but the number of ions obtained is enhanced (see below). [Pg.71]

Metastable ions yield valuable information on fragmentation in mass spectrometry, providing insight into molecular structure. In electron ionization, metastable ions appear naturally along with the much more abundant normal ions. Abundances of metastable ions can be enhanced by collisionally induced decomposition. [Pg.229]

Thus, either the emitted light or the ions formed can be used to examine samples. For example, the mass spectrometric ionization technique of atmospheric-pressure chemical ionization (APCI) utilizes a corona discharge to enhance the number of ions formed. Carbon arc discharges have been used to generate ions of otherwise analytically intractable inorganic substances, with the ions being examined by mass spectrometry. [Pg.388]

The main advantages of the ms/ms systems are related to the sensitivity and selectivity they provide. Two mass analyzers in tandem significantly enhance selectivity. Thus samples in very complex matrices can be characterized quickly with Htde or no sample clean-up. Direct introduction of samples such as coca leaves or urine into an ms or even a gc/lc/ms system requires a clean-up step that is not needed in tandem mass spectrometry (28,29). Adding the sensitivity of the electron multiplier to this type of selectivity makes ms/ms a powerhil analytical tool, indeed. It should be noted that introduction of very complex materials increases the frequency of ion source cleaning compared to single-stage instmments where sample clean-up is done first. [Pg.405]

Liquid Ghromatography/Mass Spectrometry. Increased use of Hquid chromatography/mass spectrometry (Ic/ms) for stmctural identification and trace analysis has become apparent. Thermospray Ic/ms has been used to identify by-products in phenyl isocyanate precolumn derivatization reactions (74). Five compounds resulting from the reaction of phenyUsocyanate and the reaction medium were identified two from a reaction between phenyl isocyanate and methanol, two from the reaction between phenyl isocyanate and water, and one from the polymerisation of phenyl isocyanate. There were also two reports of derivatisation to enhance either the response or stmctural information from thermospray Ic/ms for linoleic acid hpoxygenase metabohtes (75) and for cortisol (76). [Pg.246]

In gas chromatography/mass spectrometry (GC/MS), the effluent from a gas chromatograph is passed into a mass spectrometer and a mass spectrum is taken every few milliseconds. Thus gas chromatography is used to separate a mixture, and mass spectrometry used to analyze it. GC/MS is a very powerful analytical technique. One of its more visible applications involves the testing of athletes for steroids, stimulants, and other performance-enhancing drugs. These drugs are converted in the body to derivatives called metabolites, which are then excreted in the... [Pg.573]

Both reactions are known from photochemistry and mass spectrometry. Enhancement of the hydrogen yield by electrostatic fields therefore cannot be used to argue against Reaction 2. [Pg.252]

In this chapter, the main aspects of mass spectrometry that are necessary for the application of LC-MS have been described. In particular, the use of selected-ion monitoring (SIM) for the development of sensitive and specific assays, and the use of MS-MS for generating structural information from species generated by soft ionization techniques, have been highlighted. Some important aspects of both qualitative and quantitative data analysis have been described and the power of using mass profiles to enhance selectivity and sensitivity has been demonstrated. [Pg.89]

Sheehan, E. W., Ketkar, S. and Willoughby, R. C., Volatility enhancement of nonvolatile solutes by the combination of a heated target and a solvent depleted particle beam , in Proceedings of the 39th ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, TN, May 19-24, 1991, pp. 1306-1307. [Pg.185]

Gunther D, Heimich CA (1999) Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier. J Anal At Spectrom 14 1363-1368 Habfast K (1998) Fractionation correction and multiple collectors in thermal ionization isotope ratio mass spectrometry. Inti J Mass Spectrom 176 133-148... [Pg.56]

Mass spectrometry for enhanced trace chemical detection,3... [Pg.19]

Selective extractions are not only of interest to solvent extraction, but also to thermal extractions. For example, selective in situ detection of polymer additives is possible using laser mass spectrometry, notably UV laser desorption/MS [561]. The proper matching of extraction technique to a sample determines the success of the operation and enhances the precision and accuracy of the analysis. [Pg.139]

Enhanced molecular ion implies reduced matrix interference. An SMB-El mass spectrum usually provides information comparable to field ionisation, but fragmentation can be promoted through increase of the electron energy. For many compounds the sensitivity of HSI can be up to 100 times that of El. Aromatics are ionised with a much greater efficiency than saturated compounds. Supersonic molecular beams are used in mass spectrometry in conjunction with GC-MS [44], LC-MS [45] and laser-induced multiphoton ionisation followed by time-of-flight analysis [46]. [Pg.361]

Tandem mass spectrometry is the ultimate problemsolving tool for chemical analysis when enhanced specificity, specificity, selectivity, sensitivity, and/or speed are required, but at a price. This is primarily due to the capacity of MS/MS to obtain spectra of selected precursor ions in complex mixtures. Advantages in using MS/MS are ... [Pg.399]


See other pages where Enhanced mass spectrometry is mentioned: [Pg.269]    [Pg.269]    [Pg.573]    [Pg.8]    [Pg.29]    [Pg.245]    [Pg.265]    [Pg.138]    [Pg.201]    [Pg.402]    [Pg.70]    [Pg.321]    [Pg.436]    [Pg.180]    [Pg.337]    [Pg.46]    [Pg.265]    [Pg.163]    [Pg.43]    [Pg.41]    [Pg.178]    [Pg.139]    [Pg.764]    [Pg.208]    [Pg.480]    [Pg.555]    [Pg.288]    [Pg.178]    [Pg.360]    [Pg.401]    [Pg.451]   
See also in sourсe #XX -- [ Pg.490 , Pg.515 ]




SEARCH



Mass enhancement

Mass spectrometry detecting performance-enhancing

Mass spectrometry matrix-enhanced surface-assisted laser

Mass spectrometry resonance enhanced multiphoton ionization

Mass spectrometry surface-enhanced laser desorption ionization

Matrix-enhanced secondary ion mass spectrometry

Matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry

Resonance-Enhanced Multiphoton Ionisation Time-of-Flight Mass Spectrometry

© 2024 chempedia.info