Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy metal oxides

Coordination Alkoxides ROM (M=metal with free p, d, or/orbitals of a favorable energy) Carboxylates RCOOM (M=metalwith freep,d,or/orbitals of a favorable energy) Metal oxides and halogenides (mainly of Sn and transition metals)... [Pg.5]

Both atomic and metal oxide ions were observed in initial investigations. Ions with low metal oxide or hydroxide bond energies resulted in the detection of only the bare metal ions. For elements with strong oxide bond energies, metal oxides were observed. By utilizing the preselection capability of the linear quadrupole, it was determined that the metal oxides were not originating from the ion... [Pg.346]

The synthesis of ultrapure monodispersible metal oxide nanomaterials with well-defined functional properties and their future applications is still a challenging task to the material synthetic chemists and engineers. Particle size influences the structural properties, lattice symmetry, and other particle parameters, due to their interaction with the surrounding environment with a high surface energy. Metal oxide can be dispersed in organic solvents (organosols) or water (hydrosols). [Pg.456]

Massidda S, Continenza A, Posternak M and Baldereschi A 1997 Quasiparticle energy bands of transition-metal oxides within a model GW scheme Phys. Rev. B 55 13 494-502... [Pg.2230]

Let us now consider the reduction of a metal oxide by carbon which is itself oxidised to carbon monoxide. The reaction will become energetically feasible when the free energy change for the combined process is negative (see also Figure i.i). Free energies. [Pg.67]

Aluminum-containing propellants deflver less than the calculated impulse because of two-phase flow losses in the nozzle caused by aluminum oxide particles. Combustion of the aluminum must occur in the residence time in the chamber to meet impulse expectations. As the residence time increases, the unbumed metal decreases, and the specific impulse increases. The soHd reaction products also show a velocity lag during nozzle expansion, and may fail to attain thermal equiUbrium with the gas exhaust. An overall efficiency loss of 5 to 8% from theoretical may result from these phenomena. However, these losses are more than offset by the increase in energy produced by metal oxidation (85—87). [Pg.39]

The atoms and molecules at the interface between a Hquid (or soHd) and a vacuum are attracted more strongly toward the interior than toward the vacuum. The material parameter used to characterize this imbalance is the interfacial energy density y, usually called surface tension. It is highest for metals (<1 J/m ) (1 J/m = N/m), moderate for metal oxides (<0.1 J/m ), and lowest for hydrocarbons and fluorocarbons (0.02 J /m minimum) (4). The International Standards Organization describes weU-estabHshed methods for determining surface tension, eg, ISO 304 for Hquids containing surfactants and ISO 6889 for two-Hquid systems containing surfactants. [Pg.541]

Appendix Thermodynamic data for the Gibbs energy of formation of metal oxides... [Pg.285]

The viscosity of liquid silicates such as drose containing barium oxide and silica show a rapid fall between pure silica and 20 mole per cent of metal oxide of nearly an order of magnitude at 2000 K, followed by a slower decrease as more metal oxide is added. The viscosity then decreases by a factor of two between 20 and 40 mole per cent. The activation energy for viscous flow decreases from 560 kJ in pure silica to 160-180kJmol as the network is broken up by metal oxide addition. The introduction of CaFa into a silicate melt reduces the viscosity markedly, typically by about a factor of drree. There is a rapid increase in the thermal expansivity coefficient as the network is dispersed, from practically zero in solid silica to around 40 cm moP in a typical soda-lime glass. [Pg.309]

Figure 23.3 shows the voltage differences that would just stop various metals oxidising in aerated water. As we should expect, the information in the figure is similar to that in our previous bar-chart (see Chapter 21) for the energies of oxidation. There are some differences in ranking, however, due to the differences between the detailed reactions that go on in dry and wet oxidation. [Pg.227]

As a second example, results from a TOP ERDA measurement for a multi-element sample are shown in Fig. 3.65 [3.171]. The sample consists of different metal-metal oxide layers on a boron silicate glass. The projectiles are 120-MeV Kr ions. It can be seen that many different recoil ions can be separated from the most intense line, produced by the scattered projectiles. Figure 3.66 shows the energy spectra for O and Al recoils calculated from the measured TOF spectra, together with simulated spectra using the SIMNRA code. The concentration and thickness of the O and Al layers are obtained from the simulations. [Pg.169]

Priming to improve adhesion Table 7 Surface energies of polymeric and metal oxide surfaces 459... [Pg.459]

To inspect for contaminants, a water break test is frequently employed. Water, being a polar molecule, will wet a high-energy surface (contact angle near 180 ), such as a clean metal oxide, but will bead-up on a low-energy surface characteristic of most organic materials. If the water flows uniformly over the entire surface, the surface can be assumed to clean, but if it beads-up or does not wet an area, that area probably has an organic contaminant that will require the part be re-processed. [Pg.995]

Figure 8.19 F.llingham diagram for the free energy of formation of metallic oxides. (After F. D. Richardson and J. H. F. Jeffes, J. Iron Steel Inst. 160, 261 (1948).) The oxygen dissociation pressure of a given M - MO system at a given temperature is obtained by joining on the lop left hand to the appropriate point on the M-MO frec-energy line, and extrapolating to the scale on the right hand ordinate for POi (atm). Figure 8.19 F.llingham diagram for the free energy of formation of metallic oxides. (After F. D. Richardson and J. H. F. Jeffes, J. Iron Steel Inst. 160, 261 (1948).) The oxygen dissociation pressure of a given M - MO system at a given temperature is obtained by joining on the lop left hand to the appropriate point on the M-MO frec-energy line, and extrapolating to the scale on the right hand ordinate for POi (atm).
The bonding agent technique is usually not applicable to the metal particles in the composite. However, the surface of the metal is almost invariably covered by a thin (40-80 A) oxide layer [50]. The free energy of oxide surfaces is normally quite large (10 mJ/m ) to allow quick wetting by most organic polymers (40-60 mJ/m ). Additionally, the metal surface may provide two... [Pg.715]

Pseudocapacitance is used to describe electrical storage devices that have capacitor-like characteristics but that are based on redox (reduction and oxidation) reactions. Examples of pseudocapacitance are the overlapping redox reactions observed with metal oxides (e.g., RuO,) and the p- and n-dopings of polymer electrodes that occur at different voltages (e.g. polythiophene). Devices based on these charge storage mechanisms are included in electrochemical capacitors because of their energy and power profiles. [Pg.215]


See other pages where Energy metal oxides is mentioned: [Pg.258]    [Pg.258]    [Pg.572]    [Pg.922]    [Pg.1854]    [Pg.2209]    [Pg.2219]    [Pg.486]    [Pg.39]    [Pg.412]    [Pg.494]    [Pg.163]    [Pg.43]    [Pg.3]    [Pg.72]    [Pg.451]    [Pg.357]    [Pg.489]    [Pg.590]    [Pg.90]    [Pg.21]    [Pg.459]    [Pg.321]    [Pg.160]    [Pg.307]    [Pg.334]    [Pg.620]    [Pg.805]    [Pg.772]    [Pg.1259]   
See also in sourсe #XX -- [ Pg.668 ]




SEARCH



Energy metals

Metal Oxides Involved in Energy Storage System

Metal oxide clusters dissociation energies

Metal oxide ions, potential energy surface

Metal oxides surface free energy data

© 2024 chempedia.info