Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective ionic liquid

Promising developments of ionic liquids for biocatalysis reflect their enhanced thermal and operational stabilities, sometimes combined with high regio- or enantioselectivities. Ionic liquids are particularly attractive media for certain biotransformations of highly polar substrates, which cannot be performed in water owing to equilibrium limitations 297). [Pg.230]

Diels-Alder reactions Neutral ionic liquids have been found to be excellent solvents for the Diels-Alder reaction. The first example of a Diels-Alder reaction in an ionic liquid was the reaction of methyl acrylate with cyclopentadiene in [EtNH3][N03] [40], in which significant rate enhancement was observed. Howarth et al. investigated the role of chiral imidazolium chloride and trifluoroacetate salts (dissolved in dichloromethane) in the Diels-Alder reactions between cyclopentadiene and either crotonaldehyde or methacroline [41]. It should be noted that this paper describes one of the first examples of a chiral cationic ionic liquid being used in synthesis (Scheme 5.1-17). The enantioselectivity was found to be < 5 % in this reaction for both the endo (10 %) and the exo (90 %) isomers. [Pg.182]

A number of enantioselective hydrogenation reactions in ionic liquids have also been described. In all cases reported so far, the role of the ionic liquid was mainly to open up a new, facile way to recycle the expensive chiral metal complex used as the hydrogenation catalyst. [Pg.230]

Figure 5.4-3 shows the results of a lifetime study for Wilke s catalyst dissolved, activated, and immobilized in the [EMIM][(CF3S02)2N]/compressed CO2 system. Over a period of more than 61 h, the active catalyst showed remarkably stable activity while the enantioselectivity dropped only slightly. These results clearly indicate - at least for the hydrovinylation of styrene with Wilke s catalyst - that an ionic liquid catalyst solution can show excellent catalytic performance in continuous product extraction with compressed CO2. [Pg.287]

Jacobsen subsequently reported a practical and efficient method for promoting the highly enantioselective addition of TMSN3 to meso-epoxides (Scheme 7.3) [4]. The chiral (salen)Cl-Cl catalyst 2 is available commercially and is bench-stable. Other practical advantages of the system include the mild reaction conditions, tolerance of some Lewis basic functional groups, catalyst recyclability (up to 10 times at 1 mol% with no loss in activity or enantioselectivity), and amenability to use under solvent-free conditions. Song later demonstrated that the reaction could be performed in room temperature ionic liquids, such as l-butyl-3-methylimidazo-lium salts. Extraction of the product mixture with hexane allowed catalyst recycling and product isolation without recourse to distillation (Scheme 7.4) [5]. [Pg.230]

Earle and coworkers [54] have performed Diels-Alder reactions in neutral ionic liquids. The results of reactions of cyclopentadiene with dimethyl maleate, ethyl acrylate and acrylonitrile are reported in Table 6.10. The cycloadditions proceeded at room temperature in all of the ionic liquids tested, except [BMIMJPF4, and gave almost quantitative yields after 18-24h. The endo/exo selectivity depends on dienophile. No enantioselectivity was observed in the [BMIM] lactate reaction. [Pg.279]

Several reports deal also with the effects of ionic liquids on enzyme enantioselectivity, which is the subject of this chapter. Although in several cases there was no change or even a decrease in enantioselectivity compared to organic solvents [47], in other cases improved enantioselectivity was observed [47,49-56]. In the following text, the latter cases will be examined in some detail. [Pg.15]

Lipases from C. antarctica and P. cepacia showed higher enantioselectivity in the two ionic liquids l-ethyl-3-methylimidazolium tetrafluoroborate and l-butyl-3-methylimidazolium hexafluoroborate than in THE and toluene, in the kinetic resolution of several secondary alcohols [49]. Similarly, with lipases from Pseudomonas species and Alcaligenes species, increased enantioselectivity was observed in the resolution of 1 -phenylethanol in several ionic liquids as compared to methyl tert-butyl ether [50]. Another study has demonstrated that lipase from Candida rugosa is at least 100% more selective in l-butyl-3-methylimidazolium hexafluoroborate and l-octyl-3-nonylimidazolium hexafluorophosphate than in n-hexane, in the resolution of racemic 2-chloro-propanoic acid [51]. [Pg.15]

Irimescu and Kato have recently described an interesting example of enzymatic KR in ionic liquids instead of organic solvents (Scheme 7.4) [12]. The resolution with CALB is based on the fact that the reaction equilibrium was shifted toward the amide synthesis by the removal of water under reduced pressure. Nonsolvent systems have been also employed in this enantioselective amidation processes, reacting racemic amines with aliphatic acids. The best reaction conditions for the conversion of acids to amides was observed using CALB at 90 °C under vacuum. Meanwhile, no... [Pg.174]

In an attempt to increase the ionic liquid/hexane partition coefficient, a new salen ligand appended with an imidazolium salt was developed (Fig. 5) [18]. Unfortunately, modification of the ligand caused a dramatic reduction in the enantioselectivity - down to 57% ee at most - although the reasons for this behavior remain unclear. [Pg.159]

Similar conclusions concerning the effect of the anion and impurities in the ionic liquid on the cyclopropanation reaction have been drawn in a recently published study [47]. Ionic liquids with the formula [bmim][X], where X = OTf, NTf2, PFe, and BF4, were used. The catalyst used in this study was 6b-Cu(OTf). In all cases, good enantioselectivities (89-97% ee) were obtained and these are similar to those obtained in chloroform. The influence of the presence of halogen anions was tested by the addition of 5% [bmim] [Cl] or [bmim][Br] to [bmim][BF4]. In both cases, a catalytically inactive solution was obtained, showing the detrimental effect of these anions on the reaction. [Pg.173]

The possibility of recycling the catalyst was also studied. In order to decrease the amount of ethyl maleate and fumarate, the addition rate of ethyl diazoacetate was reduced and the reaction temperature was kept low during the addition. Furthermore, the catalyst concentration was reduced by doubling the volume of ionic liquid. Under these conditions the catalyst was reused seven times, although both the yield and the enantioselectivity decrease from the fourth reuse on (entry 6 in Table 6). [Pg.173]

Apart from the cyclopropanation reaction, only one example has been published of the application of ionic liquids as reaction media for enantio-selective catalysis with bis(oxazoline) ligands. In this case, the complex 6b-ZnCl2 was used as a catalyst for the Diels-Alder reaction between cyclopen-tadiene and N-crotonyloxazolidin-2-one in dibutyUmidazoUiun tetrafluorob-orate (Scheme 9) [48]. Compared with the same process in CH2CI2, the reaction was faster and both the endofexo selectivity and the enantioselectivity in the endo product were excellent. However, experiments aimed at recovering the catalysts were not carried out. [Pg.173]

Recently, the use of ionic liquids instead of organic solvents has been published for the biphasic system. For PaHNL and SbHNL, the reaction rates are increased in comparison to organic solvents without a change of enantioselectivity. ... [Pg.144]

As reported by Griengl and coworkers, benzaldehyde, decanal, undecanal, and dodecanal were reacted with HCN in a two-phase solvent system aqueous buffer and ionic liquids 1 -ethyl-3-methylimidazolium tetrafluoroborate, 1 -methyl-3-propylimidazolium tetrafluoroborate, and l-butyl-3-methyl-imidazolium tetrafluoroborate in the presence of the HNLs from Prunus amygdalus and Hevea brasiliensis. When compared with the use of organic solvents as the nonaqueous phase, the reaction rate was significantly increased and the enantioselectivity remained good [51]. [Pg.112]

Dimethylchromene has also proven to be a useful substrate for the assessment of various transition metal complexes as epoxidation catalysts. Chiral Mn(III)-salen complexes are efficient <00CC615 00T417> and can be recycled when used in an ionic liquid <00CC837>. The enantioselective aziridination of a chromene has been achieved using a chiral biaryldiamine-derived catalyst (Scheme 22) <00JA7132>. [Pg.323]

Details of the first stereoselective hydrogenation in ionic liquids were published by the group of Chauvin [68], who reported the enantioselective hydrogenation of the enamide a-acetamidocinnamic acid in the biphasic system [BMIM][SbF6]/ iPrOH (ratio 3 8) catalyzed by [Rh(cod) (-)-diop ][PF6]. The reaction afforded (S)-N-acetylphenylalanine in 64% enantiomeric excess (ee) (Fig. 41.4). The product was easily and quantitatively separated and the ionic hquid could be recovered, while the loss of rhodium was less than 0.02%. [Pg.1401]

Under this aspect, the group of Jessop [102] investigated the influence of the ionic liquid used on enantioselectivity in the hydrogenation of atropic acid as an example... [Pg.1404]

Table 41.13 Enantioselective hydrogenation of enamides catalyzed by Rh-Taniaphos in various ionic liquids/water combinations and in conventional solvents [104]. Table 41.13 Enantioselective hydrogenation of enamides catalyzed by Rh-Taniaphos in various ionic liquids/water combinations and in conventional solvents [104].
Ionic liquids have also been applied in transfer hydrogenation. Ohta et al. [110] examined the transfer hydrogenation of acetophenone derivatives with a formic acid-triethylamine azeotropic mixture in the ionic liquids [BMIM][PF6] and [BMIM][BF4]. These authors compared the TsDPEN-coordinated Ru(II) complexes (9, Fig. 41.11) with the ionic catalyst synthesized with the task-specific ionic liquid (10, Fig. 41.11) as ligand in the presence of [RuCl2(benzene)]2. The enantioselectivities of the catalyst immobilized by the task-specific ionic liquid 10 in [BMIM][PF6] were comparable with those of the TsDPEN-coordinated Ru(II) catalyst 9, and the loss of activities occurred one cycle later than with catalyst 9. [Pg.1410]

Biocatalysts also operate in ionic liquids [28]. The ones that have been most widely investigated are the lipase family of enzymes. For example, Candida Antarctica lipase B immobilized in [bmim][BF4] or [bmim][PFe] under anhydrous conditions is able to catalyse transesterifications at rates comparable to those observed in other solvents. Certain lipase mediated enantioselective acylations have even resulted in considerable improvements in enantiomeric excesses... [Pg.91]

Earle, M. J., McCormac, P. B. Seddon, K. R. Diels-Alder reactions in ionic liquids a safe recyclable green alternative to lithium perchlorate-diethyl ether mixtures. Green Chem., 1999, 1(1), 23-25 Doherty, S. Goodrich, P. Hardacre, C. et al. Marked enantioselectivity enhancements for Diels-Alder reactions in ionic liquids catalysed by platinum diphosphine complexes. Green Chem., 2004, 6(1), 63-67. [Pg.125]

Examples, like the application of enantiopure ioiuc hquids in the copper catalyzed enantioselective 1,4-addition of diethyl zinc to enones giving up to 76% ee, will not be presented [178], since here the chiral ionic liquid, CIL, acts as a ligand for a metal catalyzed reaction. [Pg.379]

Scheme 81 Enantioselective Baylis-Hillman reaction in chiral ionic liquid 73... Scheme 81 Enantioselective Baylis-Hillman reaction in chiral ionic liquid 73...

See other pages where Enantioselective ionic liquid is mentioned: [Pg.288]    [Pg.288]    [Pg.344]    [Pg.15]    [Pg.16]    [Pg.113]    [Pg.132]    [Pg.158]    [Pg.171]    [Pg.172]    [Pg.159]    [Pg.14]    [Pg.21]    [Pg.187]    [Pg.390]    [Pg.54]    [Pg.174]    [Pg.1199]    [Pg.1253]    [Pg.1405]    [Pg.1438]    [Pg.102]    [Pg.167]    [Pg.4]    [Pg.299]    [Pg.319]    [Pg.464]   
See also in sourсe #XX -- [ Pg.288 ]




SEARCH



Enantioselectivities in ionic liquids

© 2024 chempedia.info