Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselectivity improvement

Porcine liver esterase (PLE) gives excellent enantioselectivity with both dimethyl 3-methylglutarate [19013-37-7] (lb) and malonate (2b) diester. It is apparent from Table 1 that the enzyme s selectivity strongly depends on the size of the alkyl group in the 2-position. The hydrolysis of ethyl derivative (2c) gives the S-enantiomer with 75% ee whereas the hydrolysis of heptyl derivative (2d) results in the R-monoester with 90% ee. Chymotrypsin [9004-07-3] (CT) does not discriminate glutarates that have small substituents in the 3-position well. However, when hydroxyl is replaced by the much bulkier benzyl derivative (Ic), enantioselectivity improves significantly. [Pg.333]

Chaubey,A., Parshad, R, Ihneja, S. C.,and Qazi, G. N. [2008).Arthrobacter sp. lipase immobilization on magnetic sol-gel composite supports for enantioselectivity improvement. Process Biochem., 44,154-160. [Pg.714]

Likewise, the influence of the ligand catalyst ratio has been investigated. Increase of this ratio up to 1.75 1 resulted in a slight improvement of the enantioselectivity of the copper(L-tryptophan)-catalysed Diels-Alder reaction. Interestingly, reducing the ligand catalyst ratio from 1 1 to 0.5 1 resulted in a drop of the enantiomeric excess from 25 to 18 % instead of the expected 12.5 %. Hence, as anticipated, ligand accelerated catalysis is operative. [Pg.93]

Because the Corey synthesis has been extensively used in prostaglandin research, improvements on the various steps in the procedure have been made. These variations include improved procedures for the preparation of norbomenone (24), alternative methods for the resolution of acid (26), stereoselective preparations of (26), improved procedures for the deiodination of iodolactone (27), alternative methods for the synthesis of Corey aldehyde (29) or its equivalent, and improved procedures for the stereoselective reduction of enone (30) (108—168). For example, a catalytic enantioselective Diels-Alder reaction has been used in a highly efficient synthesis of key intermediate (24) in 92% ee (169). [Pg.158]

Two more examples ia Table 5 iaclude the hydrolysis of esters of trans-alcohols that proceed with high efficiency practically regardless of the nature of the substituents (72) and resolution of P-hydroxynitriles with Upase from Pseudomonas sp. In the latter case the enantioselectivity of the hydrolysis was improved by iatroduciag sulfur iato the acyl moiety (73). [Pg.339]

The necessity for producing large amounts of synthetic prostaglandins and analogs provided the impetus for a number of improvements in the bicyclo[2.2.1]heptene approach. Especially important was the development of an enantioselective modification for the synthesis of chiral prostanoids without resolution (1975) and the invention of a chiral catalyst for the stereocontrolled conversion of 15-keto prostanoids to either 15(5)- or 15(7 )- alcohols. [Pg.258]

Chiral protective groups, although less frequently used in synthesis, provide sought-after protection, diastereochemical control, and enantioselectivity, and can improve the chemical characteristics of a molecule to facilitate a synthesis. ... [Pg.326]

One of the most significant developmental advances in the Jacobsen-Katsuki epoxidation reaction was the discovery that certain additives can have a profound and often beneficial effect on the reaction. Katsuki first discovered that iV-oxides were particularly beneficial additives. Since then it has become clear that the addition of iV-oxides such as 4-phenylpyridine-iV-oxide (4-PPNO) often increases catalyst turnovers, improves enantioselectivity, diastereoselectivity, and epoxides yields. Other additives that have been found to be especially beneficial under certain conditions are imidazole and cinchona alkaloid derived salts vide infra). [Pg.34]

A simple approach for the formation of 2-substituted 3,4-dihydro-2H-pyrans, which are useful precursors for natural products such as optically active carbohydrates, is the catalytic enantioselective cycloaddition reaction of a,/ -unsaturated carbonyl compounds with electron-rich alkenes. This is an inverse electron-demand cycloaddition reaction which is controlled by a dominant interaction between the LUMO of the 1-oxa-1,3-butadiene and the HOMO of the alkene (Scheme 4.2, right). This is usually a concerted non-synchronous reaction with retention of the configuration of the die-nophile and results in normally high regioselectivity, which in the presence of Lewis acids is improved and, furthermore, also increases the reaction rate. [Pg.178]

Further improvement of the reaction was achieved by applying ethyl vinyl ether 8a in the reaction instead of 8b (Scheme 6.12). The reactions between a series of nitrones la-d with 8a catalyzed by 10 mol% of 11b all proceeded to give the corresponding products 9 with excellent exo selectivity and with enantioselectivity of 88-97% ee in all cases [23]. [Pg.220]

In a more recent study on 1,3-dipolar cycloaddition reactions the use of succi-nimide instead of the oxazolidinone auxiliary was introduced (Scheme 6.19) [58]. The succinimide derivatives 24a,b are more reactive towards the 1,3-dipolar cycloaddition reaction with nitrone la and the reaction proceeds in the absence of a catalyst. In the presence of TiCl2-TADDOLate catalyst 23a (5 mol%) the reaction of la with 24a proceeds at -20 to -10 °C, and after conversion of the unstable succinimide adduct into the amide derivative, the corresponding product 25 was obtained in an endojexo ratio of <5 >95. Additionally, the enantioselectivity of the reaction of 72% ee is also an improvement compared to the analogous reaction of the oxazolidinone derivative 19. Similar improvements were obtained in reactions of other related nitrones with 24a and b. [Pg.227]

Addition of a chiral carrier can improve the enantioselective transport through the membrane by preferentially forming a complex with one enantiomer. Typically, chiral selectors such as cyclodextrins (e.g. (4)) and crown ethers (e.g. (5) [21]) are applied. Due to the apolar character of the inner surface and the hydrophilic external surface of cyclodextrins, these molecules are able to transport apolar compounds through an aqueous phase to an organic phase, whereas the opposite mechanism is valid for crown ethers. [Pg.131]

E The writing has again been revised at the sentence level, streamlining the presentation, improving explanations, and updating a thousand small details. Several little-used reactions have been deleted (the alkali fusion of arene-sulfonic acids to give phenols, for instance), and a few new ones have been added (the Sharpless enantioselective epoxidation of alkene.s, for instance). [Pg.1336]

The high enantioselectivity and broad substrate scope of the HKR are accompanied by an intriguing mechanistic framework involving cooperative catalysis between different catalyst species. Detailed mechanistic investigation into each of these pathways has produced new insights into cooperative catalysis and has resulted in synthetic improvements in the HKR and other ARO reactions [81],... [Pg.257]

Addition of (R,S)-9 to the aromatic benzaldehyde proceeded with higher enantiosclcctivity than the addition of the diastereomeric reagent (S,S)-9. The reverse is true for additions to aliphatic aldehydes. Thus, the highest enantioselectivity of 92% ee was observed in the addition of (R,R)- 9 to cyclohexanccarboxaldehyde. The low chemical yields of most addition reactions can be improved by addition of the Lewis acid diethylaluminum ethoxide. The presence of the Lewis acid solely enhanced the chemical yield without changing the enantioselectivity of the addition reactions. [Pg.144]


See other pages where Enantioselectivity improvement is mentioned: [Pg.211]    [Pg.147]    [Pg.104]    [Pg.278]    [Pg.1026]    [Pg.233]    [Pg.233]    [Pg.318]    [Pg.312]    [Pg.421]    [Pg.146]    [Pg.233]    [Pg.456]    [Pg.211]    [Pg.147]    [Pg.104]    [Pg.278]    [Pg.1026]    [Pg.233]    [Pg.233]    [Pg.318]    [Pg.312]    [Pg.421]    [Pg.146]    [Pg.233]    [Pg.456]    [Pg.176]    [Pg.66]    [Pg.323]    [Pg.263]    [Pg.181]    [Pg.181]    [Pg.99]    [Pg.30]    [Pg.192]    [Pg.195]    [Pg.233]    [Pg.239]    [Pg.254]    [Pg.133]    [Pg.344]    [Pg.576]    [Pg.14]    [Pg.316]    [Pg.318]    [Pg.172]    [Pg.290]   
See also in sourсe #XX -- [ Pg.999 ]




SEARCH



Improvement of enantioselectivity

Inversion of Enantioselectivity Dramatically Improves Catalytic Activity

© 2024 chempedia.info