Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Swollen emulsion polymerization

A new process, from Norway, has filled the size gap between emulsion and suspension polymerization techniques [7,8]. This novel polymerization method, the so-called swollen emulsion polymerization has been developed by Ugelstad for producing uniform polymeric particles in the size range of 2-100 /nm. This process comprises successive swelling steps and repolymerizations for increasing the particle size of seed polymer particles by keeping the monodispersity of the seed latex. [Pg.189]

A third variant in polymerization technology is the swollen emulsion polymerization pioneered by Ugelstad et al. (1980). The procedure is performed in two steps. First the polymerization is started by adding a swelling agent, which causes the submicrometre polymer particles to swell by large volumes of the monomer. The increase in volume can reach a factor of 1000. Secondly, the monomer-swollen beads of defined size are polymerized in a consecutive step. [Pg.81]

Suspension and emulsion polymerization are two classical polymerization techniques to produce spherical polymeric particles. Larger particles (usually larger than 50 tim) with an appreciable size distribution are produced by suspension polymerization. Submicron polymeric particles (usually smaller than 0.1 im) with extremely uniform in size are obtained by conventional emulsion polymerization processes. Recent techniques, such as swollen emulsion polymerization, dispersion polymerization, etc. give micron-size (usually between 1-50 im) monosize polymeric particles (23). [Pg.223]

Although uniform latex pa rticles were discovered already in 1947 at Dow Chemical Company in the US, a major breakthrough came around 1980 when John Ugelstad at the University of Trondheim, Norway, discovered the so called swollen emulsion polymerization technique. This allows production of very uniform particles in the size range from about 1 [im to more than 100 pm with a coefficient of variance in diameter less than 1%. [Pg.23]

Emulsion Polymerization. Emulsion polymerization takes place in a soap micelle where a small amount of monomer dissolves in the micelle. The initiator is water-soluble. Polymerization takes place when the radical enters the monomer-swollen micelle (91,92). Additional monomer is supphed by diffusion through the water phase. Termination takes place in the growing micelle by the usual radical-radical interactions. A theory for tme emulsion polymerization postulates that the rate is proportional to the number of particles [N. N depends on the 0.6 power of the soap concentration [S] and the 0.4 power of initiator concentration [i] the average number of radicals per particle is 0.5 (93). [Pg.502]

In this chapter, the polymerization methods used for the production of uniform latex particles in the size range of O.I-lOO /Ltm are described. Emulsion, swollen emulsion, and dispersion polymerization techniques and their modified forms for producing plain, functionalized, or porous uniform latex particles are reviewed. The general mechanisms and the kinetics of the polymerization methods, the developed synthesis procedures, the effect of process variables, and the product properties are discussed. [Pg.189]

The progression of an ideal emulsion polymerization is considered in three different intervals after forming primary radicals and low-molecular weight oligomers within the water phase. In the first stage (Interval I), the polymerization progresses within the micelle structure. The oligomeric radicals react with the individual monomer molecules within the micelles to form short polymer chains with an ion radical on one end. This leads to the formation of a new phase (i.e., polymer latex particles swollen with the monomer) in the polymerization medium. [Pg.190]

In another study, uniform composite polymethyl-methacrylate/polystyrene (PMMA/PS) composite particles in the size range of 1-10 fim were prepared by the seeded emulsion polymerization of styrene [121]. The PMMA seed particles were initially prepared by the dispersion polymerization of MMA by using AIBN as the initiator. In this polymerization, poly(7V-vinyl pyrolli-done) and methyl tricaprylyl ammonium chloride were used as the stabilizer and the costabilizer, respectively, in the methanol medium. Seed particles were swollen with styrene monomer in a medium comprised of seed particles, styrene, water, poly(7V-vinyl pyrollidone), Polywet KX-3 and aeorosol MA emulsifiers, sodium bicarbonate, hydroquinone inhibitor, and azobis(2-methylbu-... [Pg.219]

Polymerizations conducted in nonaqueous media in which the polymer is insoluble also display the characteristics of emulsion polymerization. When either vinyl acetate or methyl methacrylate is polymerized in a poor solvent for the polymer, for example, the rate accelerates as the polymerization progresses. This acceleration, which has been called the gel effect,probably is associated with the precipitation of minute droplets of polymer highly swollen with monomer. These droplets may provide polymerization loci in which a single chain radical may be isolated from all others. A similar heterophase polymerization is observed even in the polymerization of the pure monomer in those cases in which the polymer is insoluble in its own monomer. Vinyl chloride, vinylidene chloride, acrylonitrile, and methacryloni-trile polymerize with precipitation of the polymer in a finely divided dispersion as rapidly as it is formed. The reaction rate increases as these polymer particles are generated. In the case of vinyl chloride ... [Pg.216]

Complex formation takes place in an organic solvent or in a water/monomer mixture by reaction of the macroligand with a metal compound (e.g. a Cu(I)-ha-lide). It is supposed that the conditions in the reaction mixture are comparable to those in conventional emulsion polymerization, where monomer droplets stabilized by surfactant molecules coexist with monomer swollen micelles [64]. Reaction sites are presumably the hydrophobic core of the micelles and the monomer droplets as well. Initial results of the micellar-catalyzed ATRP of methyl methacry-... [Pg.292]

PNIPAM microsphere gels with diameter of 100-200 jim were prepared by emulsion polymerization [21]. The gel containing 12 mole % benzo[18]crown-6 was immersed in water and the diameter change of the gel was measured during heating at a rate of 0.3 °C/min. The gel was swollen below 25 °C. In the absence of metal ions, it started to shrink at 26 °C and showed a sharp volume change at 28.4 °C. Finally, the volume decreased by as much as 10 times the original volume. [Pg.63]

The emulsion polymerization system consists of three phases an aqueous phase (containing initiator, emulsifier, and some monomer), emulsified monomer droplets, the monomer-swollen micelles, and monomer-swollen particles. Water is the most important ingredient of the emulsion polymerization system. It is inert and acts as the locus of initiation (the formation of primary and oligomeric radicals) and the medium of transfer of monomer and emulsifier from monomer droplets or the monomer-swollen particle micelles to particles. An aqueous phase maintains a low viscosity and provides an efficient heat transfer. [Pg.13]

In accordance with the Smith-Ewart theory, the nucleation of particles takes place solely in the monomer-swollen micelles which are transformed into polymer particles [16]. This mechanism is applicable for hydrophobic (macro)mon-omers (see Scheme 2). The initiation of emulsion polymerization is a two-step process. It starts in water with the primary free radicals derived from the water-soluble initiator. The second step occurs in the monomer (macromonomer)-swollen micelles by entered oligomeric radicals. [Pg.14]

The preparation of a latex by emulsion polymerization comprises two stages (i) particle nucleation (ii) particle growth. For the latex to be monodisperse, the particle nucleation stage must be short relative to the particle growth stage. Despite many investigations, there is disagreement as to the locus of particle nucleation (i) monomer-swollen emulsifier micelles (ii) ad-... [Pg.67]

Surfactants play a major role in the preparation of suspensions of polymer particles by heterogeneous nucleation. In emulsion polymerization, the monomer is emulsified in a nonsolvent (usually water) using a surfactant, whereas the initiator is dissolved in the continuous phase. The role of surfactants in this process is obvious since nucleation may occur in the swollen surfactant micelle. Indeed, the number of particles formed and their size depend on the nature of surfactant and its concentration (which determines the number of micelles formed). [Pg.513]

On the other hand, Nomura and Harada [14] proposed a kinetic model for the emulsion polymerization of styrene (St), where they used Eq. 7 to predict the rate of radical entry into both polymer particles and monomer-swollen micelles. In their kinetic model, the ratio of the mass-transfer coefficient for radical entry into a polymer particle kep to that into a micelle kem> K lk,... [Pg.8]

The free radicals produced from the fraction of initiator dissolved in the water phase are responsible for particle formation and growth in the emulsion polymerization of St initiated by AIBN. The free radicals produced in pairs in the polymer particles play almost no role in the polymerization inside the polymer particles because pairs of radicals produced within a volume as small as a monomer-swollen latex particle or a monomer-swollen micelle are very hkely to recombine. [Pg.60]


See other pages where Swollen emulsion polymerization is mentioned: [Pg.401]    [Pg.401]    [Pg.401]    [Pg.279]    [Pg.552]    [Pg.190]    [Pg.190]    [Pg.191]    [Pg.193]    [Pg.196]    [Pg.210]    [Pg.215]    [Pg.221]    [Pg.222]    [Pg.77]    [Pg.246]    [Pg.58]    [Pg.227]    [Pg.7]    [Pg.20]    [Pg.9]    [Pg.356]    [Pg.168]    [Pg.95]    [Pg.13]    [Pg.53]    [Pg.82]    [Pg.4]    [Pg.30]    [Pg.57]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Emulsion polymerization

Emulsions, polymeric

Polymerization emulsion polymerizations

© 2024 chempedia.info