Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micellar emulsion polymerizations

Miniemulsion polymerization began with a single paper [5]. Professor John Ugelstad of Norway was visiting John Vanderhoff in the Department of Chemistry at Lehigh University. Their discussions lead to speculation about the possibility of nucleation and polymerization in very fine monomer droplets during emulsion polymerization. Micellar nucleation is considered to be the... [Pg.136]

Other solubilization and partitioning phenomena are important, both within the context of microemulsions and in the absence of added immiscible solvent. In regular micellar solutions, micelles promote the solubility of many compounds otherwise insoluble in water. The amount of chemical component solubilized in a micellar solution will, typically, be much smaller than can be accommodated in microemulsion fonnation, such as when only a few molecules per micelle are solubilized. Such limited solubilization is nevertheless quite useful. The incoriDoration of minor quantities of pyrene and related optical probes into micelles are a key to the use of fluorescence depolarization in quantifying micellar aggregation numbers and micellar microviscosities [48]. Micellar solubilization makes it possible to measure acid-base or electrochemical properties of compounds otherwise insoluble in aqueous solution. Micellar solubilization facilitates micellar catalysis (see section C2.3.10) and emulsion polymerization (see section C2.3.12). On the other hand, there are untoward effects of micellar solubilization in practical applications of surfactants. Wlren one has a multiphase... [Pg.2592]

The kinetic mechanism of emulsion polymerization was developed by Smith and Ewart [10]. The quantitative treatment of this mechanism was made by using Har-kin s Micellar Theory [18,19]. By means of quantitative treatment, the researchers obtained an expression in which the particle number was expressed as a function of emulsifier concentration, initiation, and polymerization rates. This expression was derived for the systems including the monomers with low water solubility and partly solubilized within the micelles formed by emulsifiers having low critical micelle concentration (CMC) values [10]. [Pg.192]

Based on the Smith-Ewart theory, the number of latex particles formed and the rate of polymerization in Interval II is proportional with the 0,6 power of the emulsifier concentration. This relation was also observed experimentally for the emulsion polymerization of styrene by Bartholomeet al. [51], Dunn and Al-Shahib [52] demonstrated that when the concentrations of the different emulsifiers were selected so that the micellar concentrations were equal, the same number of particles having the same size could be obtained by the same polymerization rates in Interval II in the existence of different emulsifiers [52], The number of micelles formed initially in the polymerization medium increases with the increasing emulsifier concentration. This leads to an increase in the total amount of monomer solubilized by micelles. However, the number of emulsifier molecules in one micelle is constant for a certain type of emulsifier and does not change with the emulsifier concentration. The monomer is distributed into more micelles and thus, the... [Pg.197]

Complex formation takes place in an organic solvent or in a water/monomer mixture by reaction of the macroligand with a metal compound (e.g. a Cu(I)-ha-lide). It is supposed that the conditions in the reaction mixture are comparable to those in conventional emulsion polymerization, where monomer droplets stabilized by surfactant molecules coexist with monomer swollen micelles [64]. Reaction sites are presumably the hydrophobic core of the micelles and the monomer droplets as well. Initial results of the micellar-catalyzed ATRP of methyl methacry-... [Pg.292]

The reaction described in this example is carried out in miniemulsion.Miniemulsions are dispersions of critically stabilized oil droplets with a size between 50 and 500 nm prepared by shearing a system containing oil, water,a surfactant and a hydrophobe. In contrast to the classical emulsion polymerization (see 5ect. 2.2.4.2), here the polymerization starts and proceeds directly within the preformed micellar "nanoreactors" (= monomer droplets).This means that the droplets have to become the primary locus of the nucleation of the polymer reaction. With the concept of "nanoreactors" one can take advantage of a potential thermodynamic control for the design of nanoparticles. Polymerizations in such miniemulsions, when carefully prepared, result in latex particles which have about the same size as the initial droplets.The polymerization of miniemulsions extends the possibilities of the widely applied emulsion polymerization and provides advantages with respect to copolymerization reactions of monomers with different polarity, incorporation of hydrophobic materials, or with respect to the stability of the formed latexes. [Pg.187]

Solubilization o-f dissolved organic molecules into micelles is important in detergency (2), emulsion polymerization (65). and micellar—enhanced ultra-fiItration (3), Just to name a -few applications. Solubilization also indirectly a-f-fects many other operations because it o-ften a-f-fects monomer—micelle equilibrium, in-fluencing sur-factant adsorption, wetting, etc. when solubi 1 izable, non—sur-factant species are present in solution. [Pg.17]

In the emulsifier free-emulsion polymerization the reaction loci are formed by nucleation of amphiphilic macromomer micelles (micellar mechanism) or by... [Pg.51]

Nevertheless micelles are normally present during Interval I of an emulsion polymerization in which latex particles are nucleated. Micellar nucleation of latex particles is dominant for monomers which have only a low solubility in water (e.g. styrene). For such a monomer any effect of micellar catalysis is likely to be revealed by an increase in the number of latex particles formed which would also result in an increased rate of polymerization. The thermal emulsion polymerization cited above seem to be a prima facie case of micellar catalysis. The thermal emulsion polymerization of styrene is investigated further here. [Pg.469]

The emulsion polymerization process involves the polymerization of liquid monomers that are dispersed in an aqueous surfactant micelle-containing solution. The monomers are solubilized in the surfactant micelles. A water-soluble initiator catalyst, such as sodium persulfate, is added to the aqueous phase. The free radicals generated cause the dispersed monomers to react to produce polymer molecules within the micellar environment. The surfactant plays an additional role in stabilizing dispersion of the produced polymer particles. Thus, the surfactants used both provide micelles to house the monomers and macroradicals, and also stabilize the produced polymer particles [193,790], Anionic surfactants, such as dodecylbenzene sulfonates, are commonly used to provide electrostatic stabilization [193], These tend to cause production of polymer particles having diameters of about 0.1-0.3 pm, whereas when steric stabilization is provided by, for example, graft copolymers, then diameters of about 0.1-10 pm tend to be produced [790,791]. [Pg.297]

The key feature of Inisurfs is their surfactant behavior. They form micelles and are adsorbed at interfaces, and as such they are characterized by a critical micelle concentration (CMC) and an area/molecule in the adsorbed state. This influences both the decomposition behavior and the radical efficiency, which are much lower than those for conventional, low molecular weight initiators. Tauer and Kosmella [4] have observed that in the emulsion polymerization of styrene, using an Inisurf concentration above the CMC resulted in an increase in the rate constant of the production of free radicals. This was attributed to micellar catalysis effects as described, for example, by Rieger [5]. Conversely, if the Inisurf concentration was below the CMC the rate constant of the production of free radicals decreased with an increase in the Inisurf concentration, which was attributed to enhanced radical recombination. Also note that a similar effect of the dependence of initiator efficiency on concentration was reported by Van Hook and Tobolsky for azobisisobutyronitrile (AIBN) [6]. [Pg.210]

In the conventional emulsion polymerization, monomer droplets are dispersed ip an aqueous phase containing micellar aggregates of surfactant. In this case, the dispersed phase represents a relatively small volume fraction of the system and the micellar aggregates constitute the sites of the polymerization process. In the gel(paste)-like emulsions employed here, the volume fraction of the dispersed phase can be as high as 0.99, and the cells of the concentrated emulsion lead to the polymerized latex particles. [Pg.18]

Unzueta et al. [18] derived a kinetic model for the emulsion copolymerization of methyl methacrylate (MMA) and butyl acrylate (BA) employing both the micellar and homogeneous nucleation mechanisms and introducing the radical absorption efficiency factor for micelles, F, and that for particles, Fp. They compared experimental results with model predictions, where they employed the values of Fp=10 and Fn,=10", respectively, as adjustable parameters. However, they did not explain the reason why the value of Fp, is an order of magnitude smaller than the value of Fp. Sayer et al. [19] proposed a kinetic model for continuous vinyl acetate (VAc) emulsion polymerization in a pulsed... [Pg.10]

As we discussed in Sect. 3.1.1, Hansen et al. [15] made significant improvements to the concept of the radical capture efficiency proposed by Nomura et al. [ 14]. Taking this concept into consideration, they examined the effect of radical desorption on micellar particle formation in emulsion polymerization [ 65 ]. Assuming that radical entry is proportional to the x power of the micelle radius and the polymer particle radius, they proposed the following general expression for the rate of particle formation ... [Pg.25]


See other pages where Micellar emulsion polymerizations is mentioned: [Pg.168]    [Pg.168]    [Pg.2597]    [Pg.353]    [Pg.193]    [Pg.376]    [Pg.211]    [Pg.211]    [Pg.549]    [Pg.220]    [Pg.354]    [Pg.353]    [Pg.38]    [Pg.9]    [Pg.126]    [Pg.170]    [Pg.239]    [Pg.147]    [Pg.377]    [Pg.112]    [Pg.4]    [Pg.11]    [Pg.25]    [Pg.27]    [Pg.27]    [Pg.28]    [Pg.28]    [Pg.28]    [Pg.29]    [Pg.30]    [Pg.30]    [Pg.31]    [Pg.33]    [Pg.34]    [Pg.40]    [Pg.69]    [Pg.115]   
See also in sourсe #XX -- [ Pg.299 ]




SEARCH



Emulsion polymerization

Emulsions, polymeric

Micellar emulsion

Polymerization emulsion polymerizations

© 2024 chempedia.info