Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsifable concentrate

According to O Donnell et al. [130], the emulsion polymerization of vinyl acetate follows the Smith-Ewart theory of emulsion polymerization [131] because the rate of polymerization is independent of the total amount of monomer present, the rate is a function of the 0.6th power of the emulsifer concentration, and the rate of emulsion polymerization is a function of the 0.7th power of the initiator concentration instead of the expected 0.4th power. In this work poly(vinyl alcohol), 88% hydrolyzed with a medium molecular weight (i.e., Du Font s Elvanol 52-22), was used as the only externally added emulsifier. Light-scattering studies indicated that this emulsifier formed no aggregates in the aqueous solution. These latter observations may, however, have been made at room temperature and not at the reaction temperature [1]. The conversion versus time curve was essentially linear up to 80% conversion. [Pg.249]

Emulsives are solutions of toxicant in water-immiscible organic solvents, commonly at 15 ndash 50%, with a few percent of surface-active agent to promote emulsification, wetting, and spreading. The choice of solvent is predicated upon solvency, safety to plants and animals, volatility, flammabiUty, compatibihty, odor, and cost. The most commonly used solvents are kerosene, xylenes and related petroleum fractions, methyl isobutyl ketone, and amyl acetate. Water emulsion sprays from such emulsive concentrates are widely used in plant protection and for household insect control. [Pg.301]

Emulsification is the process by which a hydrophobic monomer, such as styrene, is dispersed into micelles and monomer droplets. A measure of a surfactant s abiUty to solubilize a monomer is its critical micelle concentration (CMC). Below the CMC the surfactant is dissolved ia the aqueous phase and does not serve to solubilize monomer. At and above the CMC the surfactant forms spherical micelles, usually 50 to 200 soap molecules per micelle. Many... [Pg.24]

Inversion ofMon cjueous Polymers. Many polymers such as polyurethanes, polyesters, polypropylene, epoxy resins (qv), and siHcones that cannot be made via emulsion polymerization are converted into latices. Such polymers are dissolved in solvent and inverted via emulsification, foUowed by solvent stripping (80). SoHd polymers are milled with long-chain fatty acids and diluted in weak alkaH solutions until dispersion occurs (81). Such latices usually have lower polymer concentrations after the solvent has been removed. For commercial uses the latex soHds are increased by techniques such as creaming. [Pg.27]

Other test media and techniques include post-emulsification penetrants, penetrants that form gels resistant to easy removal from entrapments, penetrants that concentrate dye constituents as their carrier Hquids evaporate during test processing, and penetrants that form strippable coatings in the developers. StiU other penetrant systems are formulated for use at abnormally low or high temperatures for special test appHcations. [Pg.124]

Oilseed proteins are used as food ingredients at concentrations of 1—2% to nearly 100%. At low concentrations, the proteins are added primarily for their functional properties, eg, emulsification, fat absorption, water absorption, texture, dough formation, adhesion, cohesion, elasticity, film formation, and aeration (86) (see Food processing). Because of high protein contents, textured flours and concentrates are used as the principal ingredients of some meat substitutes. [Pg.304]

Orange shades are realized with lipophilic natural colorants like paprika oleo-resin, P-carotene, and canthaxanthin after previous emulsification to yield water-dispersible forms. Yellow shades can be achieved using turmeric as a water-soluble solution, but the solution is light sensitive. To maintain constant color, 3 to 6 ppm of P-carotene may be added. Stable brown coloration is obtained from caramel a concentrated syrup is easily incorporated, well flavored and stable in creams. ... [Pg.595]

In buffered surfactant-enhanced alkaline flooding, it was found that the minimum in interfacial tension and the region of spontaneous emulsification correspond to a particular pH range, so by buffering the aqueous pH against changes in alkali concentration, a low interfacial tension can be maintained when the amount of alkali decreases because of acids, rock consumption, and dispersion [1826]. [Pg.207]

Key mechanisms important for improved oil mobilization by microbial formulations have been identified, including wettability alteration, emulsification, oil solubilization, alteration in interfacial forces, lowering of mobility ratio, and permeability modification. Aggregation of the bacteria at the oil-water-rock interface may produce localized high concentrations of metabolic chemical products that result in oil mobilization. A decrease in relative permeability to water and an increase in relative permeability to oil was usually observed in microbial-flooded cores, causing an apparent curve shift toward a more water-wet condition. Cores preflushed with sodium bicarbonate showed increased oil-recovery efficiency [355]. [Pg.221]

At the refinery, before distillation, the salt content is often further reduced by a second emulsification with freshwater, followed by demulsification. Crude oils with high salt contents could lead to breakdowns and corrosion at the refinery. The object of using an emulsion breaker, or demulsifier, is to break the emulsion at the lowest possible concentration and, with little or no additional consumption of heat, to bring about a complete separation of the water and reduce the salt content to a minimum. [Pg.325]

Demulsifiers (specifically, oil spill demulsifiers) can be applied to oil spills in low concentrations. They prevent mousse formation for significant periods of time and cause a large reduction in oil-water interfacial tension. The best of these was found to prevent emulsification at dosages as low as 1 part inhibitor to 20,000 parts of fresh oil at 20° C [273]. At dosages of 1 1000, at temperatures higher than 10° C, the chemical also results in significant and rapid dispersion of the oil. For very low temperatures or highly weathered oil, the performance of the chemical falls off sharply. [Pg.326]

Manoi, K. and Rizvi, S. S. H. (2009). Emulsification mechanisms and characterizations of cold, gel-like emulsions produced from texturized whey protein concentrate. Food Hydro-colloids 23, 1837-1847. [Pg.198]

Spherical microparticles are more difficult to manufacture and can be prepared by several methods. One method prepares silica hydrogel beads by emulsification of a silica sol in an immiscible organic liquid [20,21,24,25]. To promote gelling a silica hydrosol, prepared as before, is dispersed into small droplets in a iater immiscible liquid and the temperature, pH, and/or electrolyte concentration adjusted to promote solidification. Over time the liquid droplets become increasingly viscous and solidify as a coherent assembly of particles in bead form. The hydrogel beads are then dehydrated to porous, spherical, silica beads. An alternative approach is based on the agglutination of a silica sol by coacervation [25-27], Urea and formaldehyde are polymerized at low pH in the presence of colloidal silica. Coacervatec liquid... [Pg.163]

The selection of a suitable emulsifying agent and its appropriate concentration are matters of experience and of trial and error. It is not necessary to use emulsifier amounts above the required quantities to produce complete interfacial films, unless an increase in the viscosity of the dispersion medium is intended. Reducing the interfacial tension makes emulsification easy but does not by itself prevent coalescence of the particles and resultant phase separation. Frequently, combinations of two or more emulsifying agents are used [2] to (a) adequately reduce the interfacial tension, (b) produce a sufficiently rigid interfacial film, and (c)... [Pg.269]

Self-emulsification The polymer molecules are modified chemically by the introduction of basic (e.g., amino) or acidic (e.g., carboxyl) groups in such concentration and location that the polymer undergoes self-emulsification without surfactant after dispersion in an acidic or basic solution. [Pg.274]

In interfacial polymerization, monomers react at the interface of two immiscible liquid phases to produce a film that encapsulates the dispersed phase. The process involves an initial emulsification step in which an aqueous phase, containing a reactive monomer and a core material, is dispersed in a nonaqueous continuous phase. This is then followed by the addition of a second monomer to the continuous phase. Monomers in the two phases then diffuse and polymerize at the interface to form a thin film. The degree of polymerization depends on the concentration of monomers, the temperature of the system, and the composition of the liquid phases. [Pg.550]

Latex or emulsion polymers are prepared by emulsification of monomers in water by adding a surfactant. A water-soluble initiator is added, e.g., persulfate or hydrogen peroxide (with a metallic ion as catalyst), that polymerises the monomer yielding polymer particles, which have diameters of about 0.1 pm. The higher the concentration of surfactant added, the smaller the polymer particles. [Pg.82]

The surface active agents (surfactants) may be cationic, anionic or non-ionic. Surfactants commonly used are cetyltrimethyl ammonium bromide (CTABr), sodium lauryl sulphate (NaLS) and triton-X, etc. The surfactants help to lower the surface tension at the monomer-water interface and also facilitate emulsification of the monomer in water. Because of their low solubility surfactants get fully dissolved or molecularly dispersed only at low concentrations and at higher concentrations micelles are formed. The highest concentration where in all the molecules are in dispersed state is known as critical micelle concentration (CMC). The CMC values of some surfactants are listed in table below. [Pg.16]

Soy Protein Concentrates. Both non-functional (low or no solubility) and functional (good solubility, emulsification capacity, and dispersibility) soy protein concentrates (70% protein, dry basis) are commercially available for use in meat products (2-4, 6, j), 15) Normally, a highly functional product with no harsh or bitter flavors is desirable. When used to replace lean meat, non-hydrated concentrate can be used at levels up to 6-7% in finished nonspecific emulsion meats Higher replacement levels or formulas with specific cost/nutrition requirements may use soy protein concentrate with a judicious amount of textured soy protein (6). Excellent yields, cost savings, texture, flavor and nutrient profiles are possible. However, most soy protein concentrates lack sufficient solubility or sufficiently low viscosities to be used in brines for absorption or injection into whole muscle tissue. When legal standards for protein content exist (13), more concentrate must be used to achieve legal minimums. Brine viscosities increase and uniform distribution of brine components throughout the specific whole muscle piece is restricted. Finished product appearance and flavor are easily compromised. Thus, use of soy protein concentrates in whole muscle applications is limited. [Pg.97]

Characteristically, legume seeds are rich in protein and contain intermediate to high levels of lysine and threonine which are important in balancing the deficiencies of these essential amino acids in cereal diets. Certain legume proteins, such as soybean, also exhibit strong functional properties, especially water solubility, water and fat binding and emulsification. Thus soybean flours, protein concentrates and isolates have been used widely as nutritional supplements and functional ingredients in foods. [Pg.179]

ATP-dependent process, aided by the bile-salt excretion pump (BSEP) expression in the canalicular membrane. Conjugation increases the aqueous solubility of the bile adds, and renders these bile adds largely impermeable to the cell membranes of the intestine and duodenum hence, they are unable to leave the intestinal lumen. This allows bile-add levels to rise in the lumen, ultimately reaching sufficient concentrations to form micelles, which allow lipid emulsification and subsequent absorption. [Pg.3]

Emulsification of Very Concentrated Emulsions Using the PIT Method... [Pg.16]


See other pages where Emulsifable concentrate is mentioned: [Pg.94]    [Pg.94]    [Pg.125]    [Pg.335]    [Pg.514]    [Pg.441]    [Pg.148]    [Pg.259]    [Pg.193]    [Pg.268]    [Pg.123]    [Pg.249]    [Pg.79]    [Pg.417]    [Pg.671]    [Pg.275]    [Pg.276]    [Pg.166]    [Pg.146]    [Pg.429]    [Pg.98]    [Pg.180]    [Pg.7]    [Pg.5]    [Pg.6]    [Pg.11]    [Pg.11]    [Pg.16]   
See also in sourсe #XX -- [ Pg.166 ]




SEARCH



Emulsifer

Emulsification

Emulsification concentration, initial

© 2024 chempedia.info