Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emissions from United States

Figure 4.3. Relative role of various greenhouse gas emissions from United States in 2000... Figure 4.3. Relative role of various greenhouse gas emissions from United States in 2000...
Kebreab E, K. A. Johnson, S. L. Archibeque, D. Pape and T. Wirth, 2008. Model for estimating enteric methane emissions from United States dairy and feedlot cattle. J Anim Sci. 86, 2738-2748. [Pg.436]

The low organic emissions from steady state combustion at power plants should not be extrapolated to small scale units such as woodstoves where the necessary conditions for efficient combustion are rarely achieved. [Pg.129]

World C02 emissions are expected to increase by 1.9% annually from 2001 to 2025. Much of the increase in these emissions is expected to occur in the developing world, where emerging economies such as China and India fuel their economic development mostly with fossil energy. China s C02 emissions in 2007 exceeded those of the United States, and emissions of the developing countries are expected to surpass those of the industrialized countries about the year 2018. In terms of per capita carbon dioxide emissions, the United States is still the "leader" with a 21 tons/per capita/per year emission (Russia 11.8, EU 8.6, China 5.1, India 1.8), and these emissions continued to increase in all parts of the world except the EU, where it has been reduced by 2%. [Pg.22]

For the assessment of the contribution of the emission categories to the observed NMVOC concentrations the Chemical Mass Balance (CMB) modelling technique, version 8 from United States Environmental Protection Agency (Watson et al., 1998 Watson et al., 2001) was selected. The method uses source specific ratios between the emission rates of certain set of compounds and aims to recognise these fingerprints, or soiuce profiles, in the profile measured at the receptor point. As a result the CMB model delivers contributions from each source type to the total ambient NMVOC and individual hydrocarbon species at receptor points and their uncertainties. [Pg.345]

However, such a level can still be considered too high for vehicles having 3-way catalytic converters. In fact, results observed in the United States (Benson et al., 1991) and given in Figure 5.20 show that exhaust pollutant emissions, carbon monoxide, hydrocarbons and nitrogen oxides, increase from 10 to 15% when the sulfur level passes from 50 ppm to about 450 ppm. This is explained by an inhibiting action of sulfur on the catalyst though... [Pg.252]

Emissions of CO in the United States peaked in the late 1960s, but have decreased consistendy since that time as transportation sector emissions significandy decreased. Between 1968 and 1983, CO emissions from new passenger cars were reduced by 96% (see Exhaust CONTUOL, automotive). This has been partially offset by an increase in the number of vehicle-miles traveled annually. Even so, there has been a steady decline in the CO concentrations across the United States and the decline is expected to continue until the late 1990s without the implementation of any additional emissions-reduction measures. In 1989, there were still 41 U.S. urban areas that exceeded the CO NAAQS on one or mote days per year, but the number of exceedances declined by about 80% from 1980 to 1989. Over the same time period, nationwide CO emissions decreased 23%, and ambient concentrations declined by 25% (4). [Pg.373]

Selection of pollution control methods is generally based on the need to control ambient air quaUty in order to achieve compliance with standards for critetia pollutants, or, in the case of nonregulated contaminants, to protect human health and vegetation. There are three elements to a pollution problem a source, a receptor affected by the pollutants, and the transport of pollutants from source to receptor. Modification or elimination of any one of these elements can change the nature of a pollution problem. For instance, tall stacks which disperse effluent modify the transport of pollutants and can thus reduce nearby SO2 deposition from sulfur-containing fossil fuel combustion. Although better dispersion aloft can solve a local problem, if done from numerous sources it can unfortunately cause a regional one, such as the acid rain now evident in the northeastern United States and Canada (see Atmospheric models). References 3—15 discuss atmospheric dilution as a control measure. The better approach, however, is to control emissions at the source. [Pg.384]

Another factor is the potential economic benefit that may be realized due to possible future environmental regulations from utilizing both waste and virgin biomass as energy resources. Carbon taxes imposed on the use of fossil fuels in the United States to help reduce undesirable automobile and power plant emissions to the atmosphere would provide additional economic incentives to stimulate development of new biomass energy systems. Certain tax credits and subsidies are already available for commercial use of specific types of biomass energy systems (93). [Pg.37]

In the United States and increasingly in other parts of the world, environmental regulations prohibit the combustion of all but very low sulfur-content coals without sulfur oxide emission controls. The cost of installing sulfur oxide control equipment together with concern about equipment rehabihty have led to the shipment of the lower rank low sulfur coals from up to 1600 km away from the mining site. [Pg.153]

The nature of potential exposure ha2ards of low level microwave energy continues to be investigated (116—118). In the United States, leakage emission from microwave ovens is regulated to the stringent limit of 5 mW/cm at 5 cm (119). There is no federal limit on emission from industrial systems but the IMPI has set a voluntary standard which specifies 10 mW/cm at 5 cm (120). Emission values are equivalent to personnel exposures at several meters, well below limits that had previously prevailed in eastern Europe. This conclusion, derived for microwave ovens, should be vaUd for all microwave systems (121). [Pg.344]

Automotive Emission Control Catalysts. Air pollution (qv) problems caused by automotive exhaust emissions have been met in part by automotive emission control catalysts (autocatalysts) containing PGMs. In the United States, all new cars have been requited to have autocatalyst systems since 1975. In 1995, systems were available for control of emissions from both petrol and diesel vehicles (see Exhaust control, automotive). [Pg.172]

Emissions control systems play an important role at most coal-fired power plants. For example, PC-fired plants sited in the United States require some type of sulfur dioxide control system to meet the regulations set forth in the Clean Air Act Amendments of 1990, unless the boiler bums low sulfur coal or benefits from offsets from other highly controlled boilers within a given utiUty system. Flue-gas desulfurization (FGD) is most commonly accomphshed by the appHcation of either dry- or wet-limestone systems. Wet FGD systems, also referred to as wet scmbbers, are the most effective solution for large faciUties. Modem scmbbers can typically produce a saleable waUboard-quaUty gypsum as a by-product of the SO2 control process (see SULFURREMOVAL AND RECOVERY). [Pg.10]

CAAA Impact on Nonutility Power Producers. The SO2 and NO regulations being implemented as part of the CAAA of 1990 primarily target electric utiHty power plants. However, under Phase II of the CAAA, nonutiHty power producers will be requited to acquire emissions allowances for any SO2 being emitted from new faciHties. Although industrial emitters of SO2 and NO are not directly affected, the EPA did undertake a study to estimate what contribution industrial producers have on annual estimated SO2 production in the United States (10). The report found that annual industrial SO2 emissions would remain below the predeterrnined critical limit of 5.6 x 10 tons/yr until at least 2015 (10). Thus, the agency recommended no new controls for industrial SO2 emissions at this time. [Pg.91]

In the United States, the largest concentration of atmospheric vanadium occurs over Eastern seaboard cities where residual fuels of high vanadium content from Venezuela are burned ia utility boilers. Coal ash ia the atmosphere also coataias vanadium (36). Ambient air samples from New York and Boston contain as much as 600—1300 ng V/m, whereas air samples from Los Angeles and Honolulu contained 1—12 ng V/m. Adverse pubHc health effects attributable to vanadium ia the ambieat air have aot beea deteroiiaed. lacreased emphasis by iadustry oa controlling all plant emissions may have resulted ia more internal reclamation and recycle of vanadium catalysts. An apparent drop ia consumption of vanadium chemicals ia the United States since 1974 may be attributed, in part, to such reclamation activities. [Pg.393]

Even rain is not pure water. Reports from the U.S. Geological Survey show that it contains 2.3—4.6 ppm of soflds, or a yearly precipitation of 2.5—5 t/km. Recently (ca 1997), work conducted ia the United States and Europe has underscored the rather dangerous results of iacreased use of fossil fuels, where the SO and NO emissions that end up ia the rain lower its pH from 5.6 (slightly acidic) for uncontaminated rain, to acid rains. Such acid rain has serious effects on surface waters (1). About 40 x 10 t of SO and 25 x 10 t of NO were emitted ia the United States ia 1980. There are, however, encouragiag trends the 1970 Clean Air Act has led to a gradual reduction ia these emissions, bringing the SO emissions down from the previous levels cited by 10% by 1990, and the NO emissions down by 6%, with a consequent slight decrease ia rain acidity. A part of the Clean Air Act is also iatended to cap SO emissions from major poiat sources at 13.5 x 10 t (2). Between 1994 and 1995, total SO emissions ia the U.S. decreased remarkably by 13% and total NO emissions by 8%. [Pg.235]

A variety of models have been developed to study acid deposition. Sulfuric acid is formed relatively slowly in the atmosphere, so its concentrations are beUeved to be more uniform than o2one, especially in and around cities. Also, the impacts are viewed as more regional in nature. This allows an even coarser hori2ontal resolution, on the order of 80 to 100 km, to be used in acid deposition models. Atmospheric models of acid deposition have been used to determine where reductions in sulfur dioxide emissions would be most effective. Many of the ecosystems that are most sensitive to damage from acid deposition are located in the northeastern United States and southeastern Canada. Early acid deposition models helped to estabUsh that sulfuric acid and its precursors are transported over long distances, eg, from the Ohio River Valley to New England (86—88). Models have also been used to show that sulfuric acid deposition is nearly linear in response to changing levels of emissions of sulfur dioxide (89). [Pg.386]


See other pages where Emissions from United States is mentioned: [Pg.446]    [Pg.446]    [Pg.218]    [Pg.84]    [Pg.51]    [Pg.194]    [Pg.920]    [Pg.367]    [Pg.368]    [Pg.369]    [Pg.369]    [Pg.372]    [Pg.372]    [Pg.374]    [Pg.377]    [Pg.385]    [Pg.433]    [Pg.434]    [Pg.162]    [Pg.213]    [Pg.242]    [Pg.513]    [Pg.178]    [Pg.183]    [Pg.189]    [Pg.51]    [Pg.77]    [Pg.338]    [Pg.96]    [Pg.9]    [Pg.91]    [Pg.207]    [Pg.147]    [Pg.421]    [Pg.32]   
See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Emissions from

© 2024 chempedia.info