Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elimination, direction Carbon monoxide

Direct reaction of iron pentacarbonyl with trimethylsilyl isocyanide ( C=N—SiMe3) at 65°-75° yields an air-sensitive substitution product Me3Si—N=C Fe(CO)4 in 93% yield, with elimination of carbon monoxide (152). It was shown by infrared spectroscopy (38) that complex formation lowers the N=C bond order for Me3Si—N=C , whereas it raises the N=C bond order for Me3C—N=C , presumably as a result of interaction between dv orbitals of silicon with the metal d orbitals. [Pg.119]

In the presence of strong acid, formic acid decomposes to water and carbon monoxide. In the process, reactive intermediates form which are capable of direct carboxylation of carbonium ions. Since many carbonium ions are readily generated by the reaction of alcohols with strong acid, the process of elimination and carboxylation can be conveniently carried out in a single flask. The carbonium ions generated are subject to the... [Pg.134]

Although analogous to the direct coupling reaction, the catalytic cycle for the carbonylative coupling reaction is distinguished by an insertion of carbon monoxide into the C-Pd bond of complex A (see A—>B, Scheme 31). The transmetalation step-then gives trans complex C which isomerizes to the cis complex D. The ketone product E is revealed after reductive elimination. [Pg.593]

This report describes a process to produce vinyl acetate with high selectivity from exclusively methanol, carbon monoxide, and hydrogen. The simplest scheme for this process involves esterifying acetic acid with methanol, converting the methyl acetate with syn gas directly to ethylidene diacetate and acetic acid, and finally, thermal elimination of acetic acid. Produced acetic acid is recycled. Each step proceeds in high conversion and selectivity. [Pg.136]

This hydride then may add an acetylene molecule to form the vinyl derivative. A carbon monoxide insertion will produce the acrylyl nickel compound which can yield acrylate esters by either of two routes. Direct alcoholysis of the acyl nickel group may take place, as occurs with acylcobalt compounds (42) or, an acyl halide (or other acyl derivative, e.g., acyl alkanoate) may be eliminated. Alcoholysis of the acyl halide would then complete the catalytic cycle (35). [Pg.193]

Nickel tetracarbonyl is known to dissociate into the more reactive tricarbonyl readily [step (1)] and this species is known to react readily with a variety of halides by oxidative addition presumably as shown in steps (2) and (3). Subsequent loss of CO would give an equilibrium mixture of the four complexes shown in (3). Step (4) is the well-known carbon monoxide insertion reaction. The acylnickel complex formed in this step then may re-ductively eliminate acid halide [step (5)], which then alcoholizes [step (6)] or it may react directly with alcohol to form ester and a hydridonickel complex (7), which then reacts with CO and decomposes to nickel tricarbonyl and HC1 (8) ... [Pg.325]

The carboalkoxylation of saturated aliphatic halides may give mixtures of isomeric products if carried out above about 75°, at least with tetra-carbonylcobalt anion as catalyst. Isomerization occurs because the intermediate alkylcobalt complex isomerizes competitively with the carbonylation at the higher temperatures. The isomerization probably involves stepwise loss of carbon monoxides to the tricarbonylalkylcobalt(I) stage. This complex then may reversibly rearrange by a hydride elimination to a hydride-olefin-71 complex. The hydride may also add back in the reverse direction and produce an isomeric alkyl. Subsequent readdition of carbon monoxides and alcoholysis would produce isomerized ester ... [Pg.332]

Terminal monoalkenes were alkylated by stabilized carbanions (p a 10-18) in the presence of 1 equiv. of palladium chloride and 2 equiv. of triethylamine, at low temperatures (Scheme l).1 The resulting unstable hydride eliminate to give the alkene (path b), or treated with carbon monoxide and methanol to produce the ester (path c).2 As was the case with heteroatom nucleophiles, attack at the more substituted alkene position predominated, and internal alkenes underwent alkylation in much lower (=30%) yield. In the absence of triethylamine, the yields were very low (1-2%) and reduction of the metal by the carbanion became the major process. Presumably, the tertiary amine ligand prevented attack of the carbanion at the metal, directing it instead to the coordinated alkene. The regiochemistry (predominant attack at the more sub-... [Pg.571]

As indicated in Section 11,4 (p. 64), direct treatment of alkyl halides with sodium cobalt tetracarbonyl, carbon monoxide, and methanol at elevated temperatures and pressures yields esters. Surprisingly, application of this reaction at 60° (using methanol instead of ether) to methyl tri-0-acetyl-2-deoxy-2-iodo-/3-D-glucopyranoside gave, almost exclusively, the elimination product (88) (in deacetylated form) and a compound presumed to be (on the basis of nuclear magnetic resonance evidence only) the branched-chain ester (87) in less than 0.5 % yield. It is thought that, in the presence of methanol, the sodium cobalt tetracarbonyl dissociates to yield sodium methoxide, and that this causes deacetylation of the substrate. [Pg.112]

Vinyl bromides are directly aminocarbonylated by nickel carbonyl and amines. Very similarly, Rh (CO)i6 and BU4NCI as cat yst convert allylphosphates to. -y-unsaturated amides via rr-allylrhodium complexes (equation 43). Although palladium(O) complexes are more reactive than rhodium(I) complexes, palladium(O) complexes undergo side reactions, like reductive elimination in the presence of carbon monoxide, and direct nucleophilic attack by amines. [Pg.407]

The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentanones, 246, from a>-alkenylacetylenes, 245, and carbon monoxide.176 Enyne cyclization has been catalyzed with nitriles using catalytic (77S-CsH5)2Ti(PMe3)2 95177-179 and other variants have since been discovered where the desired cyclopentenones can be directly prepared from the enyne and CO using (77S-CsHs)2Ti(CO)2 68 (Scheme 33) 176,180-184 Addition of PMe3 to the latter reaction mixture has proved to be beneficial. Stoichiometric reactions established that the initial step in the catalytic cycle is reductive coupling of the alkyne and the olefin to form the titanacycle. Carbon monoxide insertion followed by reductive elimination generates the observed product. [Pg.270]

The reaction products from the fuel must be gaseous so that they can be directly vented to the air. This eliminates the requirement for hardware to collect, store and return the spent solid or liquid reaction products. The product of the reaction of hydrogen with oxygen, from the air, is water. There is no carbon so no un-bumed hydrocarbons or toxic carbon monoxide is produced. All fossil fuels contain some amount of sulfur compounds. These are converted to sulfur dioxide when the fuel is burned. Most processes under consideration for the production of hydrogen are free from sulfur or any other harmful contaminants. Thus, unlike fossil fuel hydrocarbons, hydrogen combustion products will not be contaminated with sulfur compounds. [Pg.94]

Under certain conditions, such as exposure/to particular catalytic materials, each of these reactions may give yields asjiigh as SO per cent or more of theoretical. Each of these reactions are Reversible, practically completely so, under certain conditions where side reactions and decompositions are largely eliminated. Secondary decomposition of acetaldehyde to methane and carbon monoxide, reduction of the ethylene by hydrogen to ethane, break down of ether to lower molecular weight compounds, polymerizations, etc., so involve any equilibrium relations that the relative rates of the different reactions as well as the equilibria are difficult to obtain experimentally. Even where specific and directive catalysts are used, side reactions are present and complicate any precise analysis of the decomposition mechanism. [Pg.38]

While wanning the catalysis mixture to 55 C (Step D, Scheme 1) leads to no other observable reaction intermediates, the generation of intermediate 8 would allow the series of steps shown in Scheme 1. Insertion of the coordinated CO into the palladium-carbon bond would lead to the overall coupling of acid chloride, imine and carbon monoxide in conq>lex 10. The subsequent loss of HCl from 10, either via direct deprotonation or P-H elimination, would form the a-amide substituted ketene 11. The latter is known to be in rapid equilibrium with its cyclic mesoionic l,3-oxazolium-5-oxide tautomeric 12 (14). These steps would lead to the liberation of the Pd(0) catalyst, which can return to the catalytic cycle. [Pg.508]

In the aliphatic series no other useful route has yet been found for the synthesis of aldehydes which is the outcome usually desired from this reaction. Results are, however, more favorable with aromatic oxo carboxylic acids their thermal decomposition results in elimination of both carbon monoxide and carbon dioxide, but it can be directed towards formation of the aldehyde by decarboxylating the anils of the oxo acid 39 these yield Schiff bases in the first place ... [Pg.1017]


See other pages where Elimination, direction Carbon monoxide is mentioned: [Pg.189]    [Pg.1203]    [Pg.105]    [Pg.422]    [Pg.175]    [Pg.528]    [Pg.192]    [Pg.20]    [Pg.218]    [Pg.309]    [Pg.1]    [Pg.64]    [Pg.138]    [Pg.607]    [Pg.329]    [Pg.858]    [Pg.190]    [Pg.4]    [Pg.163]    [Pg.125]    [Pg.123]    [Pg.525]    [Pg.1]    [Pg.113]    [Pg.61]    [Pg.4]    [Pg.4633]    [Pg.607]    [Pg.422]    [Pg.409]    [Pg.111]    [Pg.85]    [Pg.460]    [Pg.81]    [Pg.160]    [Pg.36]   


SEARCH



Carbon elimination

Carbon monoxide, elimination

Carbonation direct

Elimination monoxide

© 2024 chempedia.info