Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide insertion reactions

Another important reaction typically proceeding in transition metal complexes is the insertion reaction. Carbon monoxide readily undergoes this process. Therefore, the insertion reaction is extremely important in organoiron chemistry for carbonylation of alkyl groups to aldehydes, ketones (compare Scheme 1.2) or carboxylic acid derivatives. Industrially important catalytic processes based on insertion reactions are hydroformylation and alkene polymerization. [Pg.3]

Carbon Monoxide Process. This process involves the insertion of carbon monoxide [630-08-0] into a chloroacetate. According to the hterature (34) in the first step ethyl chloroacetate [105-39-5] reacts with carbon monoxide in ethanol [64-17-5] in the presence of dicobalt octacarbonyl [15226-74-1], Co2(CO)g, at typical temperature of 100°C under a pressure of 1800 kPa (18 bars) and at pH 5.7. Upon completion of the reaction the sodium chloride formed is separated along with the catalyst. The ethanol, as well as the low boiling point components, is distilled and the nonconverted ethyl chloroacetate recovered through distillation in a further column. The cmde diethyl malonate obtained is further purified by redistillation. This process also apphes for dimethyl malonate and diisopropyl malonate. [Pg.467]

Initial step is the formation of a dicobalthexacarbonyl-alkyne complex 5 by reaction of alkyne 1 with dicobaltoctacarbonyl 4 with concomitant loss of two molecules of CO. Complex 5 has been shown to be an intermediate by independent synthesis. It is likely that complex 5 coordinates to the alkene 2. Insertion of carbon monoxide then leads to formation of a cyclopentenone complex 6, which decomposes into dicobalthexacarbonyl and cyclopentenone 3 ... [Pg.223]

Although analogous to the direct coupling reaction, the catalytic cycle for the carbonylative coupling reaction is distinguished by an insertion of carbon monoxide into the C-Pd bond of complex A (see A—>B, Scheme 31). The transmetalation step-then gives trans complex C which isomerizes to the cis complex D. The ketone product E is revealed after reductive elimination. [Pg.593]

Another route to enantiomcrically pure iron-acyl complexes depends on a resolution of diastereomeric substituted iron-alkyl complexes16,17. Reaction of enantiomerically pure chloromethyl menthyl ether (6) with the anion of 5 provides the menthyloxymethyl complex 7. Photolysis of 7 in the presence of triphenylphosphane induces migratory insertion of carbon monoxide to provide a racemic mixture of the diastereomeric phosphane-substituted menthyloxymethyl complexes (-)-(/ )-8 and ( + )-( )-8 which are resolved by fractional crystallization. Treatment of either diastereomer (—)-(/J)-8 or ( I )-(.V)-8 with gaseous hydrogen chloride (see also Houben-Weyl, Vol 13/9a, p437) affords the enantiomeric chloromethyl complexes (-)-(R)-9 or (+ )-(S)-9 without epimerization of the iron center. [Pg.520]

Synthetic and mechanistic aspects of inorganic insertion reactions. Insertion of carbon monoxide. F. Calderazzo, Angew. Chem., Int. Ed. Engl., 1977,16, 299-311 (121). [Pg.56]

Treatment of the 1,2-oxazines 52 with carbon monoxide at 1000 psi in the presence of cobalt carbonyl brings about insertion of carbon monoxide to form the 1,3-oxazepines S3 <96TL2713>. A convenient route to P-lactams fused to oxepines is made available by alkene metathesis. Thus reaction of 4-acetoxyazetidin-2-one with ally alcohol in the presence of zinc acetate, followed by iV-allylation of the nitrogen affords the derivative 54 which cyclises by RCM to form the oxazepinone 55 <96CC2231>. The same communication describes a similar synthesis of 1,3-dioxepines. [Pg.327]

A catalyst used for the u-regioselective hydroformylation of internal olefins has to combine a set of properties, which include high olefin isomerization activity, see reaction b in Scheme 1 outlined for 4-octene. Thus the olefin migratory insertion step into the rhodium hydride bond must be highly reversible, a feature which is undesired in the hydroformylation of 1-alkenes. Additionally, p-hydride elimination should be favoured over migratory insertion of carbon monoxide of the secondary alkyl rhodium, otherwise Ao-aldehydes are formed (reactions a, c). Then, the fast regioselective terminal hydroformylation of the 1-olefin present in a low equilibrium concentration only, will lead to enhanced formation of n-aldehyde (reaction d) as result of a dynamic kinetic control. [Pg.460]

Formation of the reduced 1,3-oxazepine derivative 160 from the reaction of diiron nonacarbonyl with the tetrahydrooxazine derivative (159) involves a novel formal insertion of carbon monoxide into an N—O bond (Scheme 183).248 The synthetic applicability of this unusual reaction has not been evaluated. [Pg.401]

The insertion of carbon monoxide into o-alkylpalladium(II) complexes followed by attack by either alcohols or amines is a powerful acylation method. This carbonylation reaction has been applied in several different ways to the reactions and syntheses of indoles. Hegedus and coworkers converted o-allylanilines to indoline esters 315 in yields up to 75% [293], In most of the examples in this section, CO at atmospheric pressure was employed. [Pg.146]

Complex condensation products are obtained by reaction of the alkyne complex with excess of 3,3-dimethyl-l-butyne, which yields two isomeric products of formulas Ru3(CO)6[HC2C(Me)3-COCH2CMe3][HC2CMe3]2 (125). The X-ray structure of one of those adducts (Fig. 19) shows that both dimerization of two alkyne molecules and the insertion of carbon monoxide into the alkyne metal bonds have occurred. The Ru-Ru distances of 2.820,2.828, and 2.686 A in the ring are of interest. The value of 2.686 A is one of the shortest found in a... [Pg.291]

It is also called dissociative because one of the rate-determining steps is the dissociation of carbon monoxide. The cycle is started by the dissociation of a ligand, which results in the release of the planar 16 electron species (I). In analogy to the cobalt mechanism (see Wiese KD and Obst D, 2006, in this volume), the next step is the addition of an olefin molecule to form the r-complex (II). This complex undergoes a rearrangement reaction to the corresponding reaction steps decide whether a branched or a linear aldehyde is the product of the hydroformylation experiment. The next step is the addition of a carbon monoxide molecule to the 18 electron species (IV). Now, the insertion of carbon monoxide takes place and... [Pg.17]

The carbonylation reaction (Eq. 1) involves formal insertion of carbon monoxide into the C - 0 bond of methanol ... [Pg.188]

Insertion of carbon monoxide and alkenes into metal-carbon bonds is one of the most important reaction steps in homogeneous catalysis. It has been found for insertion processes of platinum [16] that the relative positions of the hydrocarbyl group and the unsaturated fragment must be cis in the reacting complex [17], The second issue concerns the stereochemical course of the reaction, insertion versus migration as discussed in Chapter 2.2. [Pg.244]

Metal-Oxygen Compounds. A few examples of the insertion of carbon monoxide into metal-oxygen groups have been reported. The best known is the reaction of mecuric acetate in methanol solution with carbon monoxide, forming methoxycarbonylmercuric acetate (83) which probably involves the following steps (32) ... [Pg.183]

Figure C shows carbon monoxide insertion reactions. There are a number of reduction reactions of carbon monoxide catalyzed by transition metals, and these, I believe, all involve an insertion of carbon monoxide into a metal hydride as an initial step. Cobalt hydrocarbonyl reacts with carbon monoxide to give formate derivatives. This is probably an insertion reaction also. Figure C shows carbon monoxide insertion reactions. There are a number of reduction reactions of carbon monoxide catalyzed by transition metals, and these, I believe, all involve an insertion of carbon monoxide into a metal hydride as an initial step. Cobalt hydrocarbonyl reacts with carbon monoxide to give formate derivatives. This is probably an insertion reaction also.
Bromobenzyl alcohol and its derivatives were converted to phthalides by the palladium catalysed insertion of carbon monoxide and intramolecular quenching of the formed acylpalladium complex. 2-Hydroxymethyl-1-bromonaphthaline, for example, gave the tricyclic product in excellent yield (3.34.). An interesting feature of the process is the use of molybdenum hexacarbonyl as carbon monoxide source. The reaction was also extended to isoindolones, phthalimides and dihydro-benzopyranones 42... [Pg.42]

The insertion of alkynes into arylpalladium complexes might also be accompanied by the insertion of carbon monoxide into the resulting vinylpalladium intermediate. The carbonylative annulation of TV-protected 2-iodoanilines and internal alkynes under an ambient pressure of carbon monoxide resulted in the formation of 2-quinolones (4.14.), The protection of the nitrogen atom in the aniline is crucial to the success of the reaction. [Pg.72]

Azoles, like other heteroycles, usually undergo coupling reactions that involve the incorporation of an olefin or carbon monoxide readily. The insertion of carbon monoxide commonly leads to the formation of either a... [Pg.117]

The ready insertion of carbon monoxide into furanylpalladium complexes is impressively demonstrated by the reaction depicted in 6.63. The iodofiirane derivative was reacted with carbon monoxide in the presence of tetrabutylammonium chloride. Following an aqueous workup the appropriate carboxylic acid was isolated in good yield (6.63.).94 It is worth pointing out, that due to the mildness of the reaction conditions the Heck coupling of the olefin moiety could be excluded. [Pg.121]

The halogenated derivatives of six membered heterocycles, like their carbacyclic analogues, usually participate readily in coupling reactions that involve the incorporation of an olefin or carbon monoxide. The insertion of carbon monoxide commonly leads to the formation of either a carboxylic acid derivative or a ketone, depending on the nature of the other reactants present. Intermolecular and intramolecular variants of the insertion route are equally popular, and are frequently utilized in the functionalization of heterocycles or the formation of annelated ring systems. [Pg.155]

Although the insertion of carbon monoxide into arylpaladium complexes at ambient pressure is well documented the analogous reaction of azinylpalladium complexes usually requires elevated pressures due to the electron deficient nature of these heterocycles. The reaction is commonly used to convert the haloazine into the appropriate carboxylic acid or hetaryl-ketone derivative. [Pg.161]

The mechanism for the reaction is believed to be as shown in Eq. 15.170 (start with CH3OH, lower right, and end with CHjCOOH, lower left).180 The reaction can be initiated with any rhodium salt, e.g., RhCl3, and a source of iodine, the two combining with CO to produce the active catalyst, IRItfCO y. The methyl iodide arises from the reaction of methanol and hydrogen iodide. Note that the catalytic loop involves oxidative addition, insertion, and reductive elimination, with a net production of acetic acid from the insertion of carbon monoxide into methanol. The rhodium shuttles between the +1 and +3 oxidation states. The cataylst is so efficient that the reaction will proceed at atmospheric pressure, although in practice the system is... [Pg.368]

Bromophenyl)ethanol undergoes a palladium-catalyzed carbonylation which results in the formation of isochroman-l-one (79H(12)92l). It is considered that the reaction involves formation of an aryl-palladium complex (624) through insertion of the zerovalent palladium complex (623) into the aryl halide. Insertion of carbon monoxide followed by reductive elimination of the metal as a complex species leads to the isochromanone (Scheme 242). [Pg.859]


See other pages where Carbon monoxide insertion reactions is mentioned: [Pg.30]    [Pg.38]    [Pg.113]    [Pg.194]    [Pg.198]    [Pg.191]    [Pg.405]    [Pg.530]    [Pg.713]    [Pg.194]    [Pg.371]    [Pg.80]    [Pg.34]    [Pg.125]    [Pg.103]    [Pg.245]    [Pg.209]    [Pg.76]    [Pg.437]    [Pg.25]    [Pg.189]    [Pg.108]    [Pg.99]    [Pg.764]   
See also in sourсe #XX -- [ Pg.182 , Pg.183 , Pg.209 ]

See also in sourсe #XX -- [ Pg.40 , Pg.41 , Pg.42 , Pg.99 , Pg.101 , Pg.102 , Pg.106 , Pg.107 , Pg.141 ]




SEARCH



Carbon insertion

Carbon monoxide migratory insertion reactions

Carbon monoxide reactions

Insertion Reactions of Carbon Monoxide and Isonitriles

Insertion reactions

Monoxide Reactions

Monoxide insertion

© 2024 chempedia.info