Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elimination by copper

The majority of preparative methods which have been used for obtaining cyclopropane derivatives involve carbene addition to an olefmic bond, if acetylenes are used in the reaction, cyclopropenes are obtained. Heteroatom-substituted or vinyl cydopropanes come from alkenyl bromides or enol acetates (A. de Meijere, 1979 E. J. Corey, 1975 B E. Wenkert, 1970 A). The carbenes needed for cyclopropane syntheses can be obtained in situ by a-elimination of hydrogen halides with strong bases (R. Kdstcr, 1971 E.J. Corey, 1975 B), by copper catalyzed decomposition of diazo compounds (E. Wenkert, 1970 A S.D. Burke, 1979 N.J. Turro, 1966), or by reductive elimination of iodine from gem-diiodides (J. Nishimura, 1969 D. Wen-disch, 1971 J.M. Denis, 1972 H.E. Simmons, 1973 C. Girard, 1974),... [Pg.74]

Qualitative Analysis. Nitric acid may be detected by the classical brown-ring test, the copper-turnings test, the reduction of nitrate to ammonia by active metal or alloy, or the nitrogen precipitation test. Nitrous acid or nitrites interfere with most of these tests, but such interference may be eliminated by acidifying with sulfuric acid, adding ammonium sulfate crystals, and evaporating to alow volume. [Pg.46]

Polarographic maxima. Current-voltage curves obtained with the dropping mercury cathode frequently exhibit pronounced maxima, which are reproducible and which can be usually eliminated by the addition of certain appropriate maximum suppressors . These maxima vary in shape from sharp peaks to rounded humps, which gradually decrease to the normal diffusion-current curve as the applied voltage is increased. A typical example is shown in Fig. 16.3. Curve A is that for copper ions in 0.1 M potassium hydrogencitrate solution, and curve B is the same polarogram in the presence of 0.005 per cent acid fuchsine solution. [Pg.597]

The cobalt complex is usually formed in a hot acetate-acetic acid medium. After the formation of the cobalt colour, hydrochloric acid or nitric acid is added to decompose the complexes of most of the other heavy metals present. Iron, copper, cerium(IV), chromium(III and VI), nickel, vanadyl vanadium, and copper interfere when present in appreciable quantities. Excess of the reagent minimises the interference of iron(II) iron(III) can be removed by diethyl ether extraction from a hydrochloric acid solution. Most of the interferences can be eliminated by treatment with potassium bromate, followed by the addition of an alkali fluoride. Cobalt may also be isolated by dithizone extraction from a basic medium after copper has been removed (if necessary) from acidic solution. An alumina column may also be used to adsorb the cobalt nitroso-R-chelate anion in the presence of perchloric acid, the other elements are eluted with warm 1M nitric acid, and finally the cobalt complex with 1M sulphuric acid, and the absorbance measured at 500 nm. [Pg.688]

In several instances an induction period has been observed but this has been shortened by elimination of dissolved oxygen . Deposition of cuprous oxide (Fehling s test) does not appear to influence the zero-order disappearance of Cu(II), but the induction period can be eliminated by adding copper powder (but not Cu20) ° . [Pg.431]

From blister copper, residual sulfur and impurities such as aluminum, silicon, manganese, zinc, tin, iron, nickel, arsenic, antimony and lead are first eliminated by oxidation and slagging. At the end of this stage excess oxygen remains in the partly purified copper, and this is removed by a deoxidation process. [Pg.429]

The rapid autocatalytic dissolution of aluminium, magnesium or zinc in 9 1 methanol-carbon tetrachloride mixtures is sufficiently vigorous to be rated as potentially hazardous. Dissolution of zinc powder is subject to an induction period of 2 h, which is eliminated by traces of copper(II) chloride, mercury(II) chloride or chromium(III) bromide. [Pg.196]

Several ions (e.g., manganese, iron (II), iron (III), cobalt, nickel, copper, zinc, cadmium, lead, and uranyl) react with pyrocatechol violet, and to some extent are extracted together with aluminium. The interferences from these ions and other metal ions generally present in seawater could be eliminated by extraction with diethyldithiocarbamate as masking agent. With this agent most of the metal ions except aluminium were extracted into chloroform, and other metal ions did not react in the amounts commonly found in seawater. Levels of aluminium between 6 and 6.3 pg/1 were found in Pacific Ocean and Japan Sea samples by this method. [Pg.130]

The kinetic results reported by Jameson and Blackburn (11,12) for the copper catalyzed autoxidation of ascorbic acid are substantially different from those of Taqui Khan and Martell (6). The former could not reproduce the spontaneous oxidation in the absence of added catalysts when they used extremely pure reagents. These results imply that ascorbic acid is inert toward oxidation by dioxygen and earlier reports on spontaneous oxidation are artifacts due to catalytic impurities. In support of these considerations, it is worthwhile noting that trace amounts of transition metal ions, in particular Cu(II), may cause irreproducibilities in experimental work with ascorbic acid (13). While this problem can be eliminated by masking the metal ion(s), the masking agent needs to be selected carefully since it could become involved in side reactions in a given system. [Pg.403]

In 1884, Sandmeyer, however, made the important discovery that in the presence of the corresponding cuprous salt chlorine and bromine are also directed to the nucleus. This catalytic action has not yet been explained. Perhaps a double salt is formed, or else a complex salt in which the halogen is more firmly bound than in the simple halide. According to Gattermann, the cuprous salt may be replaced by copper powder. In general, the decomposition of labile diazo-compounds, by elimination of elementary nitrogen, is accelerated by copper. [Pg.293]

The preparation of the A -desmethyl analogue, amoxapine (39-7), illustrates an alternate approach in which the oxygen ether linkage is formed last. Reaction of the imidazolide (39-2) from 2,4-dichlorobenzoic acid (39-1) and carbonyldiimidazole with ort/zo-aminophenol (39-3) gives the benzamide (39-4). This is then converted to its imino chloride (39-5) with the ubiquitous phosphorus oxychloride. Treatment of the product with piperazine leads to the amidine (39-6), probably by an addition-elimination sequence. Copper catalyzed displacement of chlorine by phenoxide closes the ring there is thus obtained amoxapine (39-7) [40]. [Pg.538]


See other pages where Elimination by copper is mentioned: [Pg.560]    [Pg.243]    [Pg.68]    [Pg.212]    [Pg.215]    [Pg.357]    [Pg.234]    [Pg.1275]    [Pg.176]    [Pg.573]    [Pg.621]    [Pg.709]    [Pg.429]    [Pg.436]    [Pg.120]    [Pg.120]    [Pg.249]    [Pg.138]    [Pg.215]    [Pg.357]    [Pg.105]    [Pg.152]    [Pg.53]    [Pg.50]    [Pg.162]    [Pg.500]    [Pg.306]    [Pg.129]    [Pg.1032]    [Pg.549]    [Pg.138]    [Pg.243]    [Pg.35]    [Pg.26]   
See also in sourсe #XX -- [ Pg.901 ]

See also in sourсe #XX -- [ Pg.901 ]

See also in sourсe #XX -- [ Pg.901 ]




SEARCH



By 1,2-elimination

© 2024 chempedia.info