Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elevation reactors

Hydrogenic ion-induced blistering has been observed, but by itself will not likely present a problem to the first wall at elevated reactor operating temperatures. The effects of blistering at high primary fluxes such as those found at beam dumps and components of neutral beam injectors, divertor throats and bombardment plates, are not known. [Pg.80]

Orthoflow A Stacked configuration Elevated reactor with a low elevation regenerator Internal stripper In-line plug flow valves Vertical tubes for catalyst transport... [Pg.207]

In 1979, Exxon built its first Flexicracker which is a side-by-side configured FCC unit with an elevated reactor vessel. This unit contained a straight external vertical riser terminating in a proprietary separation system. [Pg.216]

Primary sampling system liquid sample radiation monitor. The monitor s primary function is to indicate elevated reactor coolant sample radiation levels following a design basis event or severe accident. It may also be used to provide early indication of a possible fuel cladding breach. The monitor isolates the sample flow and initiates an alarm in the main control room and locally. [Pg.441]

Adiabatic operation. If adiabatic operation leads to an acceptable temperature rise for exothermic reactors or an acceptable fall for endothermic reactors, then this is the option normally chosen. If this is the case, then the feed stream to the reactor requires heating and the efiluent stream requires cooling. The heat integration characteristics are thus a cold stream (the reactor feed) and a hot stream (the reactor efiluent). The heat of reaction appears as elevated temperature of the efiluent stream in the case of exothermic reaction or reduced temperature in the case of endothermic reaction. [Pg.325]

Szanyi J and Goodman D W 1993 Combined elevated pressure reactor and ultrahigh vacuum surface analysis system Rev. Sc/. Instrum. 64 2350... [Pg.955]

Commercially, urea is produced by the direct dehydration of ammonium carbamate, NH2COONH4, at elevated temperature and pressure. Ammonium carbamate is obtained by direct reaction of ammonia and carbon dioxide. The two reactions are usually carried out simultaneously in a high pressure reactor. Recendy, urea has been used commercially as a catde-feed supplement (see Feeds and feed additives). Other important appHcations are the manufacture of resins (see Amino resins and plastics), glues, solvents, and some medicinals. Urea is classified as a nontoxic compound. [Pg.298]

The catalytic vapor-phase oxidation of propylene is generally carried out in a fixed-bed multitube reactor at near atmospheric pressures and elevated temperatures (ca 350°C) molten salt is used for temperature control. Air is commonly used as the oxygen source and steam is added to suppress the formation of flammable gas mixtures. Operation can be single pass or a recycle stream may be employed. Recent interest has focused on improving process efficiency and minimizing process wastes by defining process improvements that use recycle of process gas streams and/or use of new reaction diluents (20-24). [Pg.123]

Chlorine Trifluoride. Chlorine trifluoride is produced commercially by the continuous gas-phase reaction of fluorine and chlorine ia a nickel reactor at ca 290°C. The ratio of fluorine to chlorine is maintained slightly in excess of 3 1 to promote conversion of the chlorine monofluoride to chlorine trifluoride. Sufficient time ia the reactor must be provided to maintain high conversions to chlorine trifluoride. Temperature control is also critical because the equiHbrium shift of chlorine trifluoride to chlorine monofluoride and fluorine is significant at elevated temperatures. [Pg.186]

Many redundant safety features were provided at the SRP. These included a moderator dump tank, gadolinium nitrate solution as emergency absorber, continuously mnning diesel generators, and a 95 x 10 -L (25 x 10 -gal) elevated water tank for each reactor, for assurance of cooling. [Pg.219]

Typically, reactors require some type of catalyst. Reactors with catalyst can be of the fixed-bed style for fiuid-bed types. Fixed-bed reactors are the most common. The feed often enters the reactor at an elevated temperature and pressure. The reaction mixtures are often corrosive to carbon steel and require some type of stainless steel alloy or an alloy liner for protection. If the vessel wall is less than 6 mm, the vessel is constmcted of all alloy if alloy is provided. Thicker reactor walls can be fabricated with a stainless overlay over a carbon steel or other lower alloy base steel at less cost than an all-alloy wall constmction. [Pg.76]

The reaction is facilitated by elevated temperature necessitating pressure-capable, glass-lined reactors and exotic metallurgy for fittings to withstand the severely corrosive conditions. PAG product having 10—12% Al as AI2O2 can be produced. [Pg.180]

Fig. 13. Schematic of precipitated sihca production (54), where H =, eg, reactor, washer, filter, and dryer Q = pump or transfer device, eg, bucket elevator... Fig. 13. Schematic of precipitated sihca production (54), where H =, eg, reactor, washer, filter, and dryer Q = pump or transfer device, eg, bucket elevator...
At present, thionyl chloride is produced commercially by the continuous reaction of sulfur dioxide (or sulfur trioxide) with sulfur monochloride (or sulfur dichloride) mixed with excess chlorine. The reaction is conducted in the gaseous phase at elevated temperature over activated carbon (178). Unreacted sulfur dioxide is mixed with the stoichiometric amount of chlorine and allowed to react at low temperature over activated carbon to form sulfuryl chloride, which is fed back to the main thionyl chloride reactor. [Pg.141]

In TBP extraction, the yeUowcake is dissolved ia nitric acid and extracted with tributyl phosphate ia a kerosene or hexane diluent. The uranyl ion forms the mixed complex U02(N02)2(TBP)2 which is extracted iato the diluent. The purified uranium is then back-extracted iato nitric acid or water, and concentrated. The uranyl nitrate solution is evaporated to uranyl nitrate hexahydrate [13520-83-7], U02(N02)2 6H20. The uranyl nitrate hexahydrate is dehydrated and denitrated duting a pyrolysis step to form uranium trioxide [1344-58-7], UO, as shown ia equation 10. The pyrolysis is most often carried out ia either a batch reactor (Fig. 2) or a fluidized-bed denitrator (Fig. 3). The UO is reduced with hydrogen to uranium dioxide [1344-57-6], UO2 (eq. 11), and converted to uranium tetrafluoride [10049-14-6], UF, with HF at elevated temperatures (eq. 12). The UF can be either reduced to uranium metal or fluotinated to uranium hexafluoride [7783-81-5], UF, for isotope enrichment. The chemistry and operating conditions of the TBP refining process, and conversion to UO, UO2, and ultimately UF have been discussed ia detail (40). [Pg.318]

Graphite is chosen for use in nuclear reactors because it is the most readily available material with good moderating properties and a low neutron capture cross section. Other features that make its use widespread are its low cost, stabiHty at elevated temperatures in atmospheres free of oxygen and water vapor, good heat transfer characteristics, good mechanical and stmctural properties, and exceUent machinabUity. [Pg.513]

In the modern unit design, the main vessel elevations and catalyst transfer lines are typically set to achieve optimum pressure differentials because the process favors high regenerator pressure, to enhance power recovery from the flue gas and coke-burning kinetics, and low reactor pressure to enhance product yields and selectivities. [Pg.216]

Adiabatic Cracking Reactor. This principle is based on the injection of hydrocarbon feedstock into the flue gas at elevated temperatures. [Pg.442]

Trickle Bed Hydrodesulfurization The first large-scale apph-cation of trickle bed reactors was to the hydrodesulfurization of petroleum oils in 1955. The temperature is elevated to enhance the specific-rate and the pressure is elevated to improve the solubihty of the... [Pg.2119]

FIG. 26-22 Multireactor knockout (K-O) drum/catch tank a) plan view of reactors connected to horizontal containment vessel (h) back-to-back bursting disc assembly (c) elevation of self-supporting vessel (d) elevation of horizontal vessel on roof of building (e) elevation of horizontal vessel on side of building. [Pg.2297]

It is not possible, however, to calculate accurately actual gas composition by using the relationships of reactions (27-14) to (27-19) in Table 27-12. Since the gasification of coal always takes place at elevated temperatures, thermal decomposition (pyrolysis) takes place as coal enters the gasification reactor. Reaction (27-15) treats coal as a compound of carbon and hydrogen and postulates its thermal disintegration to produce carbon (coke) ana methane. Reaction (27-21) assumes the stoichiometiy of hydrogasifying part of the carbon to produce methane and carbon. [Pg.2369]

Let s consider now a system with dynamic pressures and a constant elevation. A classic example of this would be where a pump feeds a sealed reactor vessel, or boiler. The fluid level in the reactor would be more or less static in relation to the pump. The resistances in the piping, the Hf and Hv, would be mostly static although they would go up with flow. The Hp, pressure head would change with temperature. Consider Figure 8-14. [Pg.113]

The most common heterogeneous catalytic reaction is hydrogenation. Most laboratory hydrogenations are done on liquid or solid substrates and usually in solution with a slurried catalyst. Therefore the most common batch reactor is a stirred vessel, usually a stirred autoclave (see Figure 2.1.1 for a typical example). In this system a gaseous compound, like hydrogen, must react at elevated pressure to accelerate the process. [Pg.30]

The previous example was a rather unique application and not a typical case for fluidization. Although some fluidized bed reactions are executed at elevated pressure, like the naphtha reforming, most are used at atmospheric or at low pressures. The proceeding conceptual sketch. Figure 8.2.4, gives the most important features of a fluid-bed, cataljdic reactor. [Pg.183]

Pressure Vessels. Refineries have many pressure vessels, e.g., hydrocracker reactors, cokers, and catalytic cracking regenerators, that operate within the creep range, i.e., above 650°F. However, the phenomenon of creep does not become an important factor until temperatures are over 800°F. Below this temperature, the design stresses are usually based on the short-time, elevated temperature, tensile test. [Pg.261]

Model II Regenerator at higher elevation and lower pressure than reactor. Slide valves control catalyst circulation. [Pg.21]

Model IV Regenerator and reactor at approximately equal elevation and pressure. Catalyst circulates through U-bends, controlled by pressure balance and variable dense-phase riser. [Pg.21]


See other pages where Elevation reactors is mentioned: [Pg.118]    [Pg.118]    [Pg.212]    [Pg.208]    [Pg.118]    [Pg.118]    [Pg.212]    [Pg.208]    [Pg.60]    [Pg.75]    [Pg.140]    [Pg.7]    [Pg.218]    [Pg.439]    [Pg.76]    [Pg.111]    [Pg.289]    [Pg.271]    [Pg.699]    [Pg.1563]    [Pg.2150]    [Pg.36]    [Pg.61]    [Pg.262]    [Pg.734]    [Pg.49]   
See also in sourсe #XX -- [ Pg.204 , Pg.205 , Pg.206 ]




SEARCH



© 2024 chempedia.info