Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elevated temperature liquid

X. C. Le, X. F. Li, V. Lai, M. Ma, S. Yalcin, J. Feldmann, Simultaneous speciation of selenium and arsenic using elevated temperature liquid chromatography separation with inductively coupled plasma mass spectrometry detection, Spectrochim. Acta, 53B (1998), 899-909. [Pg.633]

The apparatus for open-tube diffusion consists of a silica furnace tube with a continuously flowing gas. The exit end may be at atmospheric pressure or at reduced pressure. The impurity source may be a vaporizing solid whose vapors are carried to the semiconductor by a carrier gas. The carrier gas may be bubbled through a liquid impurity source. The carrier gas takes up source molecules, which then decompose at elevated temperatures. Liquid sources are maintained at or near room temperature. This arrangement has an advantage over the use of solid sources in terms of easier control of source temperature and, thus, impurity concentrations in the carrier gas. [Pg.188]

Although the supramolecular polymers based on bifunctional ureidopyrimidinone derivatives in many ways behave like conventional polymers, the strong temperature dependence of their mechanical properties really sets them apart from macromolecular polymers. At room temperature, the supramolecular polymers show polymer-like viscoelastic behavior in bulk and solution, whereas at elevated temperatures liquid-like properties are observed. These changes are due to a 3-fold effect of temperature on the reversible polymer chain. Because of the temperature dependence of the Ka value of UPy association, the average DP of the chains is drastically reduced at elevated temperatures. Simultaneously, faster dynamics of the scission—recombination process leads to faster stress relaxation in an entangled system. These two effects occur in addition to the temperature-dependent stress relaxation processes that are also operative in melts... [Pg.316]

Self-assembled monolayers (SAMs) are commonly used as molecular lubricants in microelectromechanical systems (MEMS) [1, 2]. They have been shown to reduce dramatically the adhesion (stiction) of free-standing or moving microstructures. The most common SAMs deposited on silicon are made from chlorosilane end-groups and alkyl or perfluorinated chains of variable length, with the chemical form RCI3. The antistiction properties of a variety of monolayers have been reviewed extensively (see, for example, [3-5]). Relatively few investigations have dealt with the performance of molecular lubricants in harsh environments (such as elevated temperature, liquid and corrosive media, and high electric bias). It is of paramount practical importance to determine to what extent these films can be employed for antistiction in these conditions. [Pg.51]

ELEVATED TEMPERATURE LIQUID, flammable, n.o.s, with flash point above 60.5°C. at or above its flash point... [Pg.788]

Evidence for the solvated electron e (aq) can be obtained reaction of sodium vapour with ice in the complete absence of air at 273 K gives a blue colour (cf. the reaction of sodium with liquid ammonia, p. 126). Magnesium, zinc and iron react with steam at elevated temperatures to yield hydrogen, and a few metals, in the presence of air, form a surface layer of oxide or hydroxide, for example iron, lead and aluminium. These reactions are more fully considered under the respective metals. Water is not easily oxidised but fluorine and chlorine are both capable of liberating oxygen ... [Pg.271]

Because the heat distortion temperature of cured epoxy resins (qv) increases with the functionality of the curing agents, pyromellitic dianhydride is used to cross-link epoxy resins for elevated temperature service. The dianhydride may be added as a dispersion of micropulverized powder in liquid epoxy resin or as a glycol adduct (158). Such epoxies may be used as an insulating layer in printed circuit boards to improve heat resistance (159). Other uses include inhibition of corrosion (160,161), hot melt traffic paints (162), azo pigments (163), adhesives (164), and photoresist compounds (165). [Pg.500]

Cyclohexanol [108-93-0] is a colorless, viscous liquid with a camphoraceous odor. It is used chiefly as a chemical iatermediate, a stabilizer, and a homogenizer for various soap detergent emulsions, and as a solvent for lacquers and varnishes. Cyclohexanol was first prepared by the treatment of 4-iodocyclohexanol with ziac dust ia glacial acetic acid, and later by the catalytic hydrogenation of phenol at elevated temperatures and pressures. [Pg.425]

Sodium and potassium are restricted because they react with sulfur at elevated temperatures to corrode metals by hot corrosion or sulfurization. The hot-corrision mechanism is not fully understood however, it can be discussed in general terms. It is believed that the deposition of alkali sulfates (Na2S04) on the blade reduces the protective oxide layer. Corrosion results from the continual forming and removing of the oxide layer. Also, oxidation of the blades occurs when liquid vanadium is deposited on the blade. Fortunately, lead is not encountered very often. Its presence is primarily from contamination by leaded fuel or as a result of some refinery practice. Presently, there is no fuel treatment to counteract the presence of lead. [Pg.443]

Benzoyl peroxide is most commonly used for elevated temperature curing. The peroxide is generally supplied as a paste (-50%) in a liquid such as dimethyl phthalate to reduce explosion hazards and to facilitate mixing. The curing cycle in pressure moulding processes is normally less than five minutes. [Pg.702]

The methylated maleic acid adduct of phthalic anhydride, known as methyl nadic anhydride VI, is somewhat more useful. Heat distortion temperatures as high as 202°C have been quoted whilst cured systems, with bis-phenol epoxides, have very good heat stability as measured by weight loss over a period of time at elevated temperatures. The other advantage of this hardener is that it is a liquid easily incorporated into the resin. About 80 phr are used but curing cycles are rather long. A typical schedule is 16 hours at 120°C and 1 hour at 180°C. [Pg.760]

Flexibilized epoxy resins are important structural adhesives [69]. Liquid functionally terminated nitrile rubbers are excellent flexibilizing agents for epoxy resins. This liquid nitrile rubber can be reacted into the epoxy matrix if it contains carboxylated terminated functionalities or by adding an amine terminated rubber. The main effects produced by addition of liquid nitrile rubber in epoxy formulations is the increase in T-peel strength and in low-temperature lap shear strength, without reducing the elevated temperature lap shear. [Pg.660]

Another consideration in the application of absorption as a control technique is the treatment or disposal of the material removed from the absorber. In most cases, the scrubbing liquid containing the VOC is regenerated in an operation known as stripping, in which the VOC is desorbed from the absorbent liquid, typically at elevated temperatures and/or under vacuum. The VOC is then recovered as a liquid by a condenser. [Pg.452]

Many metals are naturally brittle at room temperature, so must be machined when hot. However, particles of these metals, such as tungsten, chromium, molybdenum, etc., can be suspended in a ductile matrix. The resulting composite material is ductile, yet has the elevated-temperature properties of the brittle constituents. The actual process used to suspend the brittle particles is called liquid sintering and involves infiltration of the matrix material around the brittle particles. Fortunately, In the liquid sintering process, the brittle particles become rounded and therefore naturally more ductile. [Pg.10]

The flash point of a liquid is the minimum temperature at which its vapor pressure is sufficiently high to produce a flammable mixture with air above the liquid. Therefore, the generation of a flammable gas or vapor cloud for liquids whose flash points are above the ambient temperature, e.g., xylene (see Table 3.1), is only possible if they are released at elevated temperatures or pressures. In such... [Pg.47]

Adsorbers, distillation colunuis, and packed lowers are more complicated vessels and as a result, the potential exists for more serious hazards. These vessels are subject to tlie same potential haz. uds discussed previously in relation to leaks, corrosion, and stress. However, llicse separation columns contain a wide variety of internals or separation devices. Adsorbers or strippers usually contain packing, packing supports, liquid distributors, hold-down plates, and weirs. Depending on tlie physical and chemical properties of the fluids being passed tlirough tlie tower, potential liazards may result if incompatible materials are used for llie internals. Reactivity with llie metals used may cause undesirable reactions, which may lead to elevated temperatures and pressures and, ullinialely, to vessel rupture. Distillation columns may contain internals such as sieve trays, bubble caps, and valve plates, wliicli are also in conlacl with tlie... [Pg.465]

A typical example of a volatile impurity that can be found as one of the main impurities in low-quality ionic liquids with alkylmethylimidazolium cations is the methylimidazole starting material. Because of its high boiling point (198 °C) and its strong interaction with the ionic liquid, this compound is very difficult to remove from an ionic liquid even at elevated temperature and high vacuum. It is therefore important to make sure, by use of appropriate allcylation conditions, that no unreacted methylimidazole is left in the final product. [Pg.24]

Figure 2.2-1 shows one of Solvent Innovation s production plants at the Institut fiir Technische Chemie und Makromolekulare Chemie, Aachen University of Technology, Germany. Figure 2.2-2 shows the synthesis of [BMIMJCl on a 30 liter scale in three stages a) start of the reaction, b) the reaction vessel after 10 min reaction time, and c) some ionic liquid product at elevated temperature. [Pg.29]

Many organic liquids, including oils (essential, animal, vegetable or mineral), alcohols, fatty acids, chlorinated hydrocarbons and aliphatic esters, are without action. The absence of any catalytic action of tin on oxidative changes is helpful in this respect. When, however, mineral acidity can arise, as with the chlorinated hydrocarbons containing water, there may be some corrosion, especially at elevated temperature. [Pg.806]


See other pages where Elevated temperature liquid is mentioned: [Pg.492]    [Pg.1052]    [Pg.65]    [Pg.279]    [Pg.271]    [Pg.7190]    [Pg.377]    [Pg.718]    [Pg.718]    [Pg.492]    [Pg.1052]    [Pg.65]    [Pg.279]    [Pg.271]    [Pg.7190]    [Pg.377]    [Pg.718]    [Pg.718]    [Pg.49]    [Pg.2765]    [Pg.631]    [Pg.212]    [Pg.319]    [Pg.531]    [Pg.311]    [Pg.144]    [Pg.291]    [Pg.699]    [Pg.4]    [Pg.29]    [Pg.83]    [Pg.87]    [Pg.213]    [Pg.696]    [Pg.221]    [Pg.40]    [Pg.284]    [Pg.662]   
See also in sourсe #XX -- [ Pg.3 , Pg.3 , Pg.3 , Pg.9 , Pg.65 ]




SEARCH



Elevated temperatures

Liquid temperature

© 2024 chempedia.info